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ABSTRACT 
The encoding of information in the position of single photons has no definite limitations due to unlimited 

sources. By using a split single-photon source and a space light module (SLM), we direct single photons 

to specific locations in a virtual network in a large area that solves the photon count detector (ICCD). We 

experimentally show the selective addressing of each location (symbol) on a 9072 size grid 

(alphabetically) to achieve 10.5 bits of mutual information per photon detected between transmitter and 

receiver. Our results can be useful for processing very large quantum information. 

Keywords: Decoy mode - Quantum key - HDQKD protocol. 

Introduction 

This study intends to establish a secure connection between two people that a third person cannot hear 

or access the information exchanged between the parties. These days, the enemy easily controls 

communications (through the Internet and eavesdropping). In this research, we present a quantum 

connection that, when the enemy wants to eavesdrop on the connection or measure it, its measurement is 

disrupted according to Heisenberg's uncertainty principle. In this research, the transmitter and receiver are 

called Alice and Bob, and the listener is called Eve. In this study, we can measure the amount of this 

information in case of information leakage.  
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Section 1 

Problem description: 

We first define quantum cryptography. The act of hiding information is called cryptography, which aims 

to transfer information securely. One way to create security in message transmission is to use shared keys. 

Current cryptography can be divided into classical and modern, apart from traditional cryptography. 

Classical cryptography does not mean obsolete cryptography. Classical cryptographic methods include 

methods that use algorithms such as DES. These algorithms can be decoded due to the mathematical 

dependence of the keys on each other. IT researchers have successfully demonstrated that the principles of 

quantum physics and quantum cryptography in optical networks can better protect communications. 

Wiesner Stephen first introduced quantum cryptography in the 1970s. In 1991, Ekert Arthur, a doctoral 

student at Oxford University, proposed another method for quantum cryptography. It should be noted that 

quantum cryptography is only used to generate and distribute keys, and this method does not apply to 

information encryption and transmission. To study quantum cryptography in detail and get acquainted with 

the basic terms and concepts, we will first briefly study electromagnetic and quantum waves; then, we will 

take a deeper look at quantum cryptography and key generation and distribution in this cryptography. [1,2] 

 

Electromagnetic waves 

 Electromagnetic waves are a series of waves with the following characteristics: Electromagnetic 

waves have the same nature and speed. There is no gap in the spectrum of electromagnetic waves, meaning 

that any frequency can be generated. These waves do not need a material environment to propagate. 

Electromagnetic waves are transverse waves. Ground sources of electromagnetic waves include telephone 

relay device waves, lights, etc.  

 

Photon 

 A photon is a fundamental particle that is a quantum unit of light or any type of electromagnetic 

radiation. Each photon has a certain amount of energy, motion magnitude, and angular or spin magnitude. 

 

Polarization 

 Polarization is one of the properties of an electromagnetic wave, such as light. Huygens first 

discovered the polarization of light in 1960. Polarization can be used extensively, for example, in quantum 

cryptography. In the following, this issue will be discussed in more detail.  

 

Principles of quantum cryptography 

 As mentioned, electromagnetic waves can be polarized. Polarization is contractually defined as the 

direction of an electric field in which either the direction of the electric field fluctuations is constant or 

varies in a certain way. If the polarization process is accurate enough, the process of generating photons 

can be positioned so that photons with vertical and horizontal polarizations are always generated. A 

polarizer is a device that only allows light to pass through a specific polarization direction. So if the light 

is not completely polarized, only half of it passes through the polarizer. As mentioned, each photon has the 

size of an angular motion or spin. In this theory, the photon, regardless of whether it has an initial 
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polarization or is passed through the polarizer, but if it does, it aligns with the polarizer axis. Uncertainty 

principle Heisenberg's quantum theory is based more on the premise that some of the quantities considered 

continuous in classical physics are quantum or discrete. In short, there are only two types of descriptions 

for a material particle or a photon: One is a wave description, and the other is a particle description. Thus, 

a particle can be attributed to both material properties (motion and location) and wave properties 

(wavelength and frequency). Electromagnetic radiation shows both wave and particle aspects. Heisenberg's 

uncertainty theory can be expressed in two ways: 1. Suppose we express electromagnetic radiation in the 

language of particles and determine a photon's location at any given moment with complete accuracy. In 

that case, the uncertainty in space and time becomes zero, but on the other hand, the uncertainty in what is 

attributed to the photon wave (such as wavelength) is infinitely large. 2. On the other hand, if we can 

determine exactly what is attributed to the photon wave, then the uncertainty in the photon wave will be 

zero, and the location of the photon will be unknown.  

 

Quantum cryptography 

 In this section, we come to the main part of the discussion. As mentioned earlier, quantum 

cryptography is only used to generate and distribute keys. This key can be used in the next steps with any 

encryption algorithm to convert the message into a password or vice versa. Quantum cryptography allows 

both parts of the connection to communicate their password through a completely secure private channel. 

The following protocols can be used to generate and distribute quantum keys:  

• BB84 

• T12 protocol 

• Decoy state protocol: A practical QKD scheme using imperfect single-photon sources, such as 

weak coherent state sources 

• SARG04 

• six-state protocol 

• E91 protocol: entanglement protocol 

• B92 protocol: protocol using only two nonorthogonal states by Charles Bennett 

• BBM92 protocol: entanglement protocol 

• MSZ96 protocol 

• COW protocol: coherent one-way protocol by Gisin 

• DPS protocol: differential phase shift by Yamamoto 

• KMB09 protocol: High Error-rate QKD protocol by Khan et al. 

• HDQKD: High-dimensional Quantum Key Distribution 

 

HDQKD protocol 

 This research uses the HDQKD protocol to increase security and noise tolerance and increase the 

information exchanged. To use this protocol, we use the SPDC device. This device converts one high-

energy photon into two low-energy photons, in which case more information is exchanged because each 

photon carries one qubit, and the dimensions of each qubit are more than 2. This protocol uses the decoy-
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state protocol to determine whether Eve could access the parties' information. PNS ATTACK is an attack 

by a third party for accessing information that retrieves information from Alice and sends a copy to Bob, 

that this problem is partially solved with the decoy-state protocol. However, the main difference in the 

decoy-state of this protocol (HDQKD) with BB84 is that in BB84, we use Quantum bit error to find out 

how much information Eve has received, but in HDQKD, we reduce the measurement so that less 

information is disturbed to understand how much information is leaked.  

 However, the main purpose of this research is to measure parameters such as noise and decoy states 

(detecting the amount of leaked information or PNS attack) that Alice and Bob can be in a secure connection 

in the form of HDQKD protocol which leads to increased security, more noise tolerance, increased 

information exchange and high data transfer speed. [3-4-5-6] I will deal with two similar works that have 

been done in this regard: 

 

BB84 protocol: 

 This protocol was proposed by Bennett and Brassard in 1984 and is based on the Heisenberg 

uncertainty principle. According to this principle, For example, without knowing the initial state of a 

photon, if we choose the vertical direction to measure the polarization of a photon, the photon passes 

through the polarizer with vertical polarization, and the horizontal polarization does not pass at all. Now, if 

we make another measurement at an angle of 45 degrees from the first measurement, the probability of the 

photon passing through the second polarizer is exactly 0.5, so we say that the first polarizer makes the 

measurement of the second polarizer completely random. Therefore, the direction of this polarization can 

be determined if a polarizer with zero to 90 degrees is selected because a 45 or 135-degree polarizer also 

gives an output with the same polarization. According to the description, the transmitter uses the source to 

send one of the four modes of high polarization (zero, 45, 90, 135) to the receiver. The receiver, on the 

other hand, is used to measure polarization. The receiver stores the measurement result. The receiver then 

uses the public channel to specify the type of Rectilinear and Diagonal measurement filters. In all these 

steps, the measurement result is kept secret by the receiver then the sender informs the receiver about which 

receiver filter was correct. Only if the transmitter and receiver used the same measurement type can we be 

sure that the measurement was correct. The key is made by using common measurements between the 

transmitter and receiver and eventually converting them to bits. [7]  

 

E91 protocol: 

 In 1991, Ekert Arthur proposed a new protocol for key distribution based on quantum correlation. 

This protocol uses a quantum channel and a single-photon source. The function of this protocol is that two 

correlation pairs are separated from each other, and each transmitter and receiver are received one of the 

two pairs. Each uses a filter to measure its input in detail according to this protocol. Like the BB84 protocol 

in its second functional part, this protocol exchanges in the classical channel to determine the measurement 

filters on both sides. Finally, for every measurement that the transmitter and receiver use the same filter, 

they should expect conflicting results according to the laws of quantum correlation. This means that both 

sides of the exchange interpret their measurements as before, except that the bit string of each is a 

complementary binary to the other. If one of the parties reverses its key, a secret key is shared between the 

two. [8]  

 

Section 2 

Concepts 
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 Communication means exchanging information through speaking and writing or any other media. 

In this project, information is passed between Alice and Bob that Alice is the transmitter and Bob the 

receiver, but unfortunately, a third person named Eve hears or observes this connection. If Alice and Bob 

want to prevent Eve from being spotted, they must encrypt their connection. Encryption involves 

communication in which the transmitted information is encrypted. The most direct encoding is the 

disposable pad, in which the message is encoded by random bit strings that act as keys. Random bit strings 

are refined by the logical XOR operator (an operator that compares two input bits and generates one output 

bit) to encode or decrypt the message. This method has been proven to be a safe method [9]. In the project, 

random bit strings are the key generated from the information exchanged between Alice and Bob. To do 

this, we need to define the quantity of information. One way to do this is to define the entropy of the 

information described below: 

 

Information entropy 

 Information entropy can be used to measure the average of the information in the X alphabet, in 

which ‘x’ is a discrete variable and ‘P(X)’ its probability is defined as follows [10]: 

2

1
( ) ( ) log

( )x

H X P x
P x





 

 This entropy is also called X uncertainty, generally using the base two logarithms. Thus the entropy 

of information can be interpreted by yes and no questions, which one of them is the answer that leads to the 

identification of information.  

 

Mutual Information 

 Here we are dealing with information that is transmitted between two actors, which is why we 

define entropy as follows: 

2

,

1
( , ) ( , ) log

( , )x y

H X Y P x y
P x y





 

 

( ; ) ( ) ( ) ( , ) ( ) ( ) ( ) ( )I X H X H H X H H X H X H X           
(q) 

 

The entropy x with the condition   is as follows:  

2 2

,

1 1
( ) ( ) ( ) log ( , ) log

( ) ( , )y x x y

H X P y P x y P x y
P x y P x y


 

  
 

  
(qq) 

 

According to Bayes's theorem, we have 

( , ) ( ) ( ) ( ) ( )P x y P x P y x P y P x y 
 



Journal of Economics and Administrative Sciences                                                        Volume 5, Supplement Issue 2 - May 2022 
 

1061 
 

 

Therefore, according to the (qq) equation and the Bayes's theorem, the entropy is equal to: 

2

,

2 2

, ,

( )
( ) ( , ) log

( ) ( )

1 ( )
( , ) log ( , ) log

( ) ( )

x y

x y x y

P y
H X P x y

P y x P x

P y
P x y P x y

P x P y x

  

 



 
 

 

Therefore, according to equation (q), Mutual Information is equal to: 

2

,

( , )
( ; ) ( , ) log

( ) ( )x y

P x y
I X P x y

P x P y
 

 

 

Measurement operator 

 So far, we have talked about classical information theory. To understand quantum mechanics in 

information theory, we must choose a strategy that can measure quantum states [11]. Quantum 

measurement is described by quantum operators 
 mM

 that apply to the following equation: 

1m m

m

M M 
 

 

For each special case, 


 the measurement load m occurs with the following probability:  

( ) m mp m M M 
         (1) 

 

() the operator is special hermetic and has a positive expectation value (
0mE  

). If the operator 

is a hermetic measure and has this condition ,m m m m mM M M  
 is called the measurement of the 

projection that we have already encountered in optics. The special positive expected value is called PVOM.  

 

State discrimination 

The simplest example of state discrimination is the distinction between two qubits. A qubit is a two-

dimensional quantum state 
0 1a b

 

2 2
( , , 1)a b a b  

 in which special vectors  
0 , 1

 are 

perpendicular to each other. Since Bob can distinguish between special cases, the special cases are 

orthogonal or perpendicular. For example, when Alice prepares two-mode specials 

1 2

1
1 , ( 0 1 )

2
   

  to send to Bob, she decides which special mode Bob will receive. The 
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projection measurement defines two properties of the asymmetric state 1 2, 
  that are not angular 1

, 2
 which 1  covers a greater angle than 1

. The projection is performed by operators 1 1 
و  

2 2 
. If the system is thrown at, 1we guess will result 1

 , and its probability of success is 

calculated as follows: 

1
2

2
1 2

1 1 1 2
(1 ) ) 0.85

2 2 2 2
GUESSP  


    

 

Obviously, by calculating this probability, an error occurs in detecting states. However, there is a way 

to distinguish between the two modes. Sometimes, this method is called unambiguous state discrimination 

[12]. The first scenario is for Bob to measure the projection on the special orthogonal states. For half of the 

measurement time, Bob operates on the operator 1 1 
1و    1

T T 
 (in pin 1), and the other half of 

the measurement time acts on  2 2 
2و   2

T T 
 (in pin 2). Suppose Bob performs a projection 

measurement at base 1. If the system is thrown after measurement 1

T
, Bob knows that our case is because 

components 2
 are in the direction of 1

T
. If the system is thrown after the measurement, it will not 

result because it has components in direction 1
.  

2

1 21 1

2 4
projP

 
 

 

 

Quantum information and Holevo range 

 The Mutual Information section includes measuring the information shared between Alice and Bob. 

Unlike the two classical states, the quantum measurement is not always able to distinguish between 

quantum states. This amount of information that can be considered about a quantum system is called 

accessible information [11]. In the case of quantum states, this available information is a measure of the 

information shared between Alice and Bob. There may be no known formula for calculating; however, high 

ranges like Holevo give us this inequality. Suppose Alice prepares a possible state mixed with the ρx density 

operator where X = 1, .., d with probabilities p1, p2,… pd that Bob makes this measurement by PVOM = 

{E1. .., Em} mentioned in the measurement operator section, in which case, with the result of measuring   

for each measurement, the Holevo range states that: 

( ; ) ( ) ( )x x

x

I X Y S S   
 

That is the above equation 

,x x

x

p 
 and 2( ) ( log )S Tr   

 which is Newman entropy. The 

maximum information for mixed quantum states is obtained 

1

n

n n
d

 
  with orthogonal bases 

 n
 

containing the same probabilities for each special state (
1

1
,... dp p

d


). Because Alice can block an 
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unlimited amount of information, but Bob only has access to this ( 2log d
) in the orthogonal system, 

quantum information and classical information are equal. However, we are interested in quantum 

information because limited information can be less than information prepared by Alice.  

 

Quantum cryptography: 

 One way to use the quantum nature of light to generate a key between Alice and Bob is to use a 

quantum key distribution or QKD [13]. Bennett et al. developed the first QKD protocol in 1984 by Bennett 

et al. [14]. Alice has a single-photon light source. She encodes a bit of information with 0 or 1 at a two-

dimensional polarization according to the bases of the photons. She encodes horizontal and vertical bases 

according to Pauli matrices 

1 0

0 1
Z

 
  

   or diagonal or non-diagonal bases with 

0 1

1 0
X

 
  
   that in 

this way, Alice and Bob can change their bases. By rotating the PBS at a 45-degree angle, Alice and Bob 

adjust the device to each other and encode the qubits.  

 

Intercept resend attack 

 The most direct attack strategy by Eve is called intercept resend. Eve tracks photons through a 

quantum channel and measures scattering as Bob does. Because Alice and Bob alone generate the key that 

Bob receives, Eve needs to resend the same photon. There are two scenarios here. The first is that Alice 

and Eve randomly choose the same bases (same Pauli matrix). So by measurement, the photon state does 

not change, so Eve has the information sent by Alice, and there is no error in it. The second scenario is that 

Alice and Eve choose unequal bases, which means that the information sent by Alice will not be revealed.  

 

Mass attacks 

 Mass attacks cause Eve to have no quantum memory. She can hold her attack equipment for as 

long as she wants and make the best measurement, according to her knowledge, a collective measure. The 

covert measurement of this attack was performed by Devetak-Winter [15].  

lim ( ) ( )
N

r S X E H X 


 
 

That these relationships are established 

( ) ( , ) ( )

( ) ( , ) ( )

S X E S X E S E

H X H X H  

 

 
  

 

Coding 

In this research, the position of photons is coded transversely, which was first done by Walbourne [16]. 

If 
( )f r

the detection range is on page x,y then: 

2 2( )r r d r f r r d r     (3) 



Design of high-dimensional quantum keys to increase security between transmitter and receiver and transfer more information 

 

1064 
 

This is a special single-photon mode on this page x,y. Now the location of 


the special state of this 

single-photon is measured. On the other hand, we have the completion rule for the measurement operator: 

2

2

1

( )

r r d r

r r r r

   

  



 

According to Equation (1), the probability of detecting a photon in space r  is equal to: 

2
( ) ( )p r r r f r     

 

The single-photon wave function can be defined in k space using the evolution equation: 

2 2 2 . 2 21
( ) ( ) ( )

2

ik rf r r d r f r k r k d rd k f r e d r k d k


      
 

In the above equation, the wave function and the Fourier transform amplitude are as follows: 

 

.

. 2

1

2

1
( ( )) ( )

2

ik r

ik r

k r e

f r k f r e d r











 F
 

For a two-dimensional Gaussian function at the point 0 0 0( , )r x y
 with variance x , the amplitude is 

as follows: 

2 2

0 0

22

( ) ( )1
( ) ( , ) exp( )

42

x x y y
f r f x y

rr

  
  

  

 Therefore, according to the above two equations, the amplitude in space k is as follows: 

2 2 2

0 0

2
( ( , )) , exp( ( ))exp( ( ))

2
x y x y x y

r
f x y k k r k k i x k y k




       F

 

Since the variance in space k is 

1

2
k

r
 

 , the amplitude in space k is as follows: 

2 2

0 022

( )1
( ( , )) , exp( )exp( ( ))

42

x y

x y x y

k k
f x y k k i x k y k

kk


       

F
 

 The variance of these two conditions estimates the uncertainty [17]. 

1

2
k r  

 

Now the probability can be calculated according to Equation 1: 

2 2
2

2 2

( )1
( ) ( ( , )) , exp( )

2 2

x y

x y

k k
p k f x y k k

k k


       

F
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It should be noted that the probability does not depend on the center of the Gaussian point. 

Measurements in space k give us no information about the center of a point in space x and vice versa. Space 

x and space k are Fouriers of each other. Due to limitations, basic vectors 
k

 
r

 can not be used for 

coding. The limit of Equation (3) 
( )f r

has a non-zero expansion, which 

1
i ja b

d


 makes the difference 

between theoretical and observational values. A discrete detector measures the position of the photons.  

 

Section 3 

High limit on mutual information 

 Until now, it has been assumed that the information content of individual photons is limited only 

by choice of encoded quantum states, as seen in the Concepts section. If someone considers the connection 

between the line of sight of free space and light, it has to deal with several sources of noise [18, 19]. Another 

source of atmospheric turbulence is wind and temperature gradients [20]. Under real circumstances, the 

detection efficiency of the detectors and their dark number must also be considered. The information 

capacity of encoded photons has been analyzed spectrally [21] and temporally [22]. This paper investigates 

the high level of information that space-encoded photons can transmit. Examination of the maximum 

information encoded in a single pulse begins with introducing the multi-photon effect in the first section. 

The second part focuses on the contribution of detector noise. Finally, the final section adds transverse 

beam propagation by noise transmission channels.  

 

Methodology: 

High level of data encryption 

 In this section, a high limit for the content of transmitted information can be translated under 

soundless conditions. The number of photons per pulse of the Np signal can be greater than one. Several 

Nd (orthogonal) detectors are used to read the signal. Detectors cannot count the number of photons. The 

simultaneous entry of several photons results in only one detector, just like a single photon. For this reason, 

we assume that each detector has only one single photon event, and a two-factor coefficient gives the 

number of recognizable symbols. 

!

!( )!

d d
s

p p d p

N N
N

N N N N

 
  

   (3.1) 

This number reaches its maximum when the number of symbols equals half the number of detectors. 

 

The upper limit includes detector noise 

 Inspired by a more accurate description, the effect of tracker noise should be analyzed. As in the 

previous section, signal pulses with a maximum of one photon per detection region are considered. 

Recognition of these signals requires a special class of sensitive single-photon cameras. Their high 

sensitivity is costly, and the possibilities are limited. Symbols in relation (3.1): Np Number of photons in a 

signal pulse and Nd Number of detectors. If the number of detector clicks does not match the number of 

photons in the signal pulse, this measurement will be ignored, as this is an undeniable sign of a noise event. 

For previous detectors, four separate events are possible. There are two ideal states, true negative and true 
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positive: no photons sent and no photons sent. The measurement is sent with a probability 00K
 or a photon 

and causes the detector to click with the probability 11K
. Two unintended events are positive and false. 

Negative: No photons are sent, but the detector is sent with a probability 01K
 or one photon, but it is not 

likely to be diagnosed with the probability 10K
.  

With two of these probabilities, the probability of correct measurement of the symbol can be calculated 

as follows: 

00 11

d p pN N N
R K K




 (3.2) 

In this case, all Np detectors click with radiant photons, while d pN N
the number of darkness does not 

occur. The probability of recognizing a wrong symbol is not 1 R because measurements whose number 

of detection events is not equal to the number of Np radiation photons are discarded, and an accurate count 

is not the same as a correct measurement on any detector. A dark count must compensate any photons that 

do not cause the detector to click from a false count detector for a fixed and correct number of detection 

events. Therefore, the probability of wrong clicks k is given by the following relation: 

00 11 01 10

d p pN N k N k k kW K K K K
  


(3.3) 

 Here, pN k
detectors click with radiant photons, while dark states do not occur at times. To 

fulfill the terms of the general Np click framework, k detectors that do not click with 01K
probability, k 

detectors that do not click with 10K
probability. No dark counting above the number required for Np, 0k 

, 0W R
, to calculate the error W, the kW

probability must be multiplied by the number of permutations. 

This leads to: 

min( , )

1       

p d pN N N
d p p

k

k

N N N
W W

k k





  
   

  


 (3.4) 

The average probability of measurement is the symbol of 
1s

W

N 
error. Common probability is defined 

as follows: 

( , )                       
( )s

R
P x y x y

N R W
  


   (3.5) 

( , )            
( 1)( )s s

W
P x y x y

N N R W
  

 
    (3.6) 

Probabilities can be used to calculate mutual information using the 

2

,

( , )
( ; ) ( , ) log

( ) ( )x y

P x y
I X P x y

P x P y
 

equation. As a result, the final equation equals: 
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2 2

1
( ; ) log ( ) log ( )

s

s s

N
W

N R NR W
I X Y

R W R W R W R W


 

    (3.7) 

Now, if 

W
a

R


  we have: 

2 2 2 2 2

11 1
( ; ) log ( ) log ( ) log ( ) log ( ) log ( )

1 1 1 1 1 1 1

s

s s
s

s

N
a

N Na a a
I X Y N

a a a a a a N


    

      
 

(3.8) 

As expected, mutual information increases for smaller ratios 

W
a

R


. The higher the probability of 

recognizing the correct symbol R and the less likely it is to measure the incorrect symbol W, the greater the 

mutual information. In addition, as seen in the previous section, the mutual information increases with the 

number of symbols.  

In this section, the number of detection events was considered equal to the number of signal photons. 

As a result of this limitation, signal loss is associated with events in which these numbers are unequal. This 

leads to total loss, which considers all events not recognized as false or true symbols. This dissipation 

measures polynomials in the number of detectors and signal photons. In this model, Nd detectors with 

efficiency detect an Np photon wave state. If the number of darknesses is darkN
, the probability of an 

observer for darkness is 

dark

d

N

N
, so the fidelity of finding the right symbol is equal to:  

( ) ( )

( ) ( )

dark dark
p p

d d

dark dark p dark
p d p

d d

N N
N N

N N
F

N N N N
N N N

N N

 




 

 


  

(3.9) 

Fidelity can be placed in the formula of mutual information: 

2 2 2

1
( ; ) log ( ) log ( ) (1 ) log ( )

1
s

s

F
I X Y N F F F

N


   


(3.10) 
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Figure 1: ( ; )I X Y as a function of the number of symbols sN  and the fidelity F  

 

Figure 1 shows that :  

Surface plot of the upper bound on the mutual information ( ; )I X Y as a function of the number of 

symbols sN  and the fidelity F. The influence of the fidelity on the mutual information is shown in figure 

1. The information per pulse increases with the fidelity and reaches its maximum at a fidelity of one which 

corresponds to the noise-free case with a mutual information of log2 ( sN ). 

High-limit level diagrams on cross-information 
( ; )I X Y

 function the number of NS and Fidelity F 

symbols.  

The effect of accuracy on mutual information is shown in the figure above. The information of each 

pulse increases with accuracy and reaches its maximum accuracy, which is related to 2log ( )sN
a noise-

free state.  

 

The upper limit includes channel noise 

 As discussed in the previous section, if someone wants to increase the mutual formation of photons 

effectively, they must consider a single photon on a large number of detectors. This is why this section 

limits the number of photons to one photon per signal pulse. The detectors are arranged in a two-

dimensional detection array, and the photon is routed to a specific detector. Channel noise in the form of 

0 0( , , )F x x y y  
function amplitude of focus with a width of   around the center: 0 0( , )x y

. It is 

assumed that the overall probability of a dark count is small compared to the detector's performance, which 

makes it possible to simplify the analysis only by considering single-photon detection. Due to the amplitude 

of the photon and the two-dimensional arrangement of the detectors, the interaction between the detectors 

becomes noticeable. The size of the detectors can be increased to minimize the exchange, but in realistic 

scenarios with limited diaphragms, this is not possible. The other end will be a range of focus on many 

detectors, which minimizes mutual information. To calculate the mutual information from this relation: 
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2

,

( , )
( ; ) ( , ) log

( ) ( )x y

P x y
I X P x y

P x P y
 

, the common probability distribution 
( ; )P X Y

 must be known. 

( ; )P X Y
 Participates in two places: the first in the simulated signal of the 0 0( , , )F x x y y  

function 

with   efficiency and the second in the counting of dark states. To describe these two states, we have to 

make a formulation and define it with an icon, which shape it is 
( , )M X Y

 . For each x-symbol, this 

statistical function can be calculated by integrating reflecting the intensity of the focus on the detectors 

being identified.  

( ) 1
 mod

(  mod )-1( )

( , ) ( ( ) 0.5  mod 0.5 )
d d

d

d

y
floor

N y N

dark
d

y ddy Nfloor
N

Nx
M X Y F k floor l x N dkdl

NN
 



      

(3.11) 

On the other hand, we have in the Gaussian function: 

2 2

0 0
0 0 2 2

( ) ( )1
( , , ) exp( )

2 2

x x y y
F x x y y 

 

  
   

(3.12) 

Finally, we use the following condition to normalize the probability: 

,

( , ) 1
x X y Y

P x y
 


                (3.13) 

So we have: 

,

( , ) ( , )
( , )

( , ) ( )d dark

x X y Y

M x y M x y
P x y

M x y N N
 

 


(3.14) 

The maximum state of mutual information sent and received is equal to

1
( ) ( )

s

P X P Y
N

 

 . With this 

data, we can obtain reciprocal information from the relation: 
2

,

( , )
( ; ) ( , ) log

( ) ( )x y

P x y
I X P x y

P x P y
 

. The 

upper bound is the mutual information between a transmitter and a receiver for a particular model. The first 

part provides an expression for the maximum amount of information that can be encrypted. A single-photon 

must be encoded at each signal pulse to maximize information per photon. The next section introduces the 

detector noise within the design range. Detector noise reduces mutual information per photon. 

 

Section 4 

Transmit data over 10 bits with a single photon 

 The encoding of information in the position of single photons has no definite limitations concerning 

unlimited sources. Using a split single-photon source and a space light module (SLM), we direct individual 

photons to specific locations in a virtual network in a large area that solves the photon count detector 

(ICCD). We experimentally show the selective addressing of each location (symbol) on a 9072 size grid 
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(alphabetically) to achieve 10.5 bits of mutual information per photon detected between transmitter and 

receiver. Our results can be useful for processing very large quantum information. 

 Its poor interaction with the environment makes the light ideal for sharing information between 

remote parties. For this reason, light is used to transmit information around the world. With single-photon 

sources, a new class of applications has emerged. Due to their quantum properties, single photons are used 

for attack angle quantum systems or quantum cryptography [23]. A well-known example is the Quantum 

Key Distribution (QKD) using the BB84 protocol [24] to create a shared secret key between Alice and Bob. 

The security of this method is based on the non-simulation theorem [25], which prohibits the copying of 

quantum states. The standard implementation of the BB84 protocol uses a two-dimensional polarization 

basis to encode information in photons. Thus the alphabet contains only the two symbols "0" and "1", which 

limits the content of information in each photon to one bit. Increasing the base dimension using a large 

alphabet increases each photon's information content and improves security [26, 27, 28]. This motivation 

is to use larger alphabets using the force of orbital angular motion [29, 30], temporal buffing [31, 32] or 

spatial translation [33, 34]. Among the spatial encryption schemes, Orbital Angle Rotation (OAM) modes 

have been proposed for encrypting high-dimensional information [35]. In a practical scenario, however, 

assuming a transmitter-receiver configuration with finite-sized diaphragms, a limited diffraction point that 

translates into space or the Gaus-Logger material has a higher capacity limit than a subset of pure OAM 

modes [36, 37]. This spatial positioning of light, or equivalently, tilting the plane waves, provides an ideal 

way to increase the information content per photon. 

Interestingly, there is no high limit to information content transmitted by single photons due to unlimited 

sources. For example, using one mole of ideally positioned single-photon detectors results in 79-bit 

information content per photon detected. This is out of reach in a practical situation. So a very relevant 

question is what can be achieved experimentally. In this chapter, we report our experiment in which we 

definitively encode more than 10 bits of information into one photon. We used 2 to 3 times more space 

encryption than before, which reported 7 bits per photon as the highest value for random keys [34] and is 

comparable to that obtained in temporal coding and polarization [38].  

 

Methodology: 

Method of operation 

The setup 

 The setup is shown in Figure (4.1). We use the spontaneous parametric method to generate a 

conversion source to produce photon pairs [39]. A locked Piscond laser with 790 nm mode with a pulse 

repetition rate of 76 MHz in an LBO crystal doubles the frequency to 395 nm. The double-frequency light 

is concentrated in a crystal of polarized photons of the potassium-tectyl phosphate (PPKTP) period, which 

automatically produces pairs of vertically polarized photons at 790 nm. Photon pairs stuck in a divider and 

a narrow, polarizing beam are separated into two states of single photons. One of these photons is sent to a 

single photon counting module that acts as a herald; the second photon, on the other hand, is routed to the 

encryption settings via a 28.5-meter single-mode fiber with 47% operating power. To communicate freely, 

one needs a coder device in the sender position and the other a decoder device in the receiver position. As 

an encoder, we use a space light modulator to adjust the wavefront of single photons. By writing a glowing 

grid on the SLM, we change the reflection angle to 0.8 angles in the vertical and horizontal directions with 

a refractive index of 76% in the first instance. The Fourier transform SLM is imaged with a 1m focal length 

lens configured in f2 on a large space photon-counting detector. A bandpass filter in 800 ± 40 nm is placed 

in front of the detector to block stray light.  
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Detector 

 The decoder must measure the entry of a photon in a single image over a large area. One of the 

technologies that can achieve this goal is the device equipped with a charge-coupling [40, 41]. ICCDs 

provide a nanosecond on light option, which significantly reduces the amount of darkness, and it enables 

such an ICCD to measure explicitly and reduces the number of darkness to one per thousand readings. The 

dark number of ICCDs originates in the thermal electrons released by the ICCD photocathode. In addition, 

the remaining gas atoms can be ionized by electron avalanche inside the microchannel plate (MCP) of the 

amplifier. These ions accelerate to the photocathode at MCP bias voltage and release secondary electron 

beams. The effect of ions is to generate many more electrons than the input photons. This increases the 

local signal in the ICCD, which is brighter than the signal produced by a photon. Therefore, these fake ion 

signals can be filtered in post-processing. Our model (Andor iStar A334 – DH - 3u – A18T) has a 

photocathode quantum efficiency of 5%. Each photon selected from the SPDC source opens the ICCD gate 

for 2 nm. Figure 4.2 is taken with an exposure time of 0.1 seconds. Single-photon events were analyzed 

using threshold photon count [41], with a threshold level set above the CCD camera readout noise. 

According to the SPDC, at the 400 kHz herald rate, we measured an average of 7.3 photon detections per 

symbol. FWHM of focus, with a fixed phase pattern in SLM and integration of more than 1000 photon 

detection events, was found to be 7.9 ± 0.3 pixels horizontally and 7.4 ± 0.2 pixels vertically. 

Figure 2:  The schematic of Spontaneous Parametric Down-Conversion (SPDC)  

Figure 2 shows that schematic representation of the layout. The spontaneous parametric decrement 

source of type II (SPDC) produces pairs of photons split by a polar beam splitter (PBS). A single-photon 

counting module (SPCM) detects one of the photons that acts as a signal for a sensitized CCD (ICCD). 

Another fiber photon is paired and occurs on a space light module (SLM). Its Fourier image is displayed 

on the ICCD. The focus position is carefully scanned according to the iron bars shown by the bow and 

arrow. The red lines indicate the 8*8 pixel mac of the symbols.  

 

Encryption 

 The target position of the photon on the ICCD is determined by the horizontal and vertical 

diffraction angle of the network in the SLM. Although scanning mirrors can be used for spatial encryption, 

SLM is a more flexible tool. Through holography, the phase and amplitude of the wavefront can be 

manipulated, which allows the use of a complex wavefront. In addition, the path of light can be modified 

for disturbances using wavefront shaping methods [42]. SLM (pixel size: 20 μm, resolution: 800*600 

pixels) with horizontal and vertical edges is programmed to scan at the ICCD detection level. The angular 
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range of the coded alphabets is small (0.33 o), and the grid step is more than 5 pixels, ensuring uniform and 

high diffraction performance for all symbols. In order to define the sent symbol, the position on the ICCD 

must be mapped to separate symbols. 

For this reason, a network is defined on the ICCD. ICCD pixels are combined in 8*8 or 12*12 pixel 

recognition areas to form a 9072 or 4050 symbol alphabet. This ICCD-level rectangular map connects each 

identification area to a unique tag, numbered from left to right and from top to bottom.  

 

Result 

 Spatial encryption of information takes place on a rectangular virtual network composed of the 

pixels of a camera. The maximum information is a bit if the entire camera chip is used. If we fill in our 

experimental parameters, the signal-to-dark ratio of 10.08 and the focus size of 8 pixels in each direction 

on the ICCD, this number will be reduced to 14.45 bits. In our experiment, we used a network with 

dimensions of 112*81 pixels, which are 9072 symbols of our alphabet. This value corresponds to the 

maximum 2log (9072) 13.15
 bit information content. The light is directed to the distinctive symbols on 

the grid by scanning the focus using SLM as an ignited window. We assume that the sender uses the X 

alphabet and the receiver uses the Y alphabet. In this system, we examine the common probability 

distribution of P(X, Y), which indicates probabilities p(x, y) for distinguishing a particular y-symbol outside 

the Y-alphabet if an x-symbol is sent outside the X-alphabet. The result is shown in Figure 4.2. Applying a 

threshold to the measured signal reduces the ICCD noise to show only the amplified signal. A diagonal line 

in the graph of the sent symbol versus the received shows the maximum correlation. There is a strong 

correlation between the sent and received symbols set in graph (a), which shows the whole alphabet in a 

log-log diagram. Graph (b) shows a magnification of the first 200 of 9072 symbols. Due to the interference 

between the symbols, lines outside the diameter are visible, corresponding to the photons that hit the symbol 

above or below the target. The distance of 112 symbols between these lines and the diameter corresponds 

to the length of the network column written on the camera. The left and right diameter signal is obtained 

by interfering with the left and right symbols in the network. A dark ICCD count can also cause noise. 
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Figure 3 : The ICD measured symbols  

Figure3 shows that the ICD measured in each of the measured symbols is counted as a function of the 

sent symbol with a macro size of 8*8 pixels. The exposure time for each symbol was 0.6 seconds. Graph 

(a) shows the correlation between all 9072 symbols in a log-log diagram. Figure (b) shows the measured 

correlation between the first 200 symbols in a line graph.  

To quantify the information contained in each photon, we calculate the mutual information between the 

sender and receiver. Mutual information I (X: Y) is a measure to reduce the average uncertainty about a 

sent symbol set X obtained by learning the value of the received symbol set Y; or, conversely, the average 

amount of information that X conveys about Y [43]. The mutual information in each transmitter-receiver 

system detection event is mathematically displayed as follows: 

2

,

( , )
( : ) ( , ) log

( ) ( )x X y Y

P x y
I X Y P x y

P x P y 

 
                                                                                  )4.1( 

Where P (x, y) is the probability of receiving the symbol y when the symbol x is sent, P (Y) is the 

probability of measuring the symbol y, and P (x) is the probability that the sender encrypts the symbol x. 

Theoretically, the mutual information depends on the number of N symbols, which has a maximum of 
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max 2log ( )I N
, assuming 

1
( )P x

N


 for each x X symbol. In this paper, we guarantee the uniform 

probability of x for the maximum realization of the theory in the absence of noise. The limited CCD size 

limits the maximum number of symbols. Using the skin size of the 8*8 detection area, our theoretical limit 

is 13.15 bits. The interaction is limited not only by the number of symbols and the entropy of the sent 

alphabet but also by the interference between the symbols due to the diffraction focal points and the noise 

from the environment and the detector. In order to reduce the interference between the symbols, the macro 

size of the detection areas can be increased. However, this reduces the number of symbols given to a limited 

number of detection pixels. The blue circles in Figure 4.3 show the maximum interdependencies of the 

mutual information for the constructed symbols with different pixel sizes. Mutual information measured 

for 8*8 and 12*12 pixels are shown as red circles. The measured data are less than theoretical. This can be 

understood from the average collision probability, indicated by the green + markers. In addition, 

considering the signal-to-darkness ratio limited to between 10 and 100, which leads to the expected 

reciprocal information, it is shown as gray bars in the figure. As can be seen from the figure, there is 

maximum mutual information due to the physical limitations of interference and noise. For large bucket 

sizes with close to zero interference between symbols, very high mutual information of more than 9 bits 

per photon can be obtained. Given the FWHM dot size of approximately 8 pixels, we choose an 8*8 burning 

that achieves 10.5 bits of mutual information per photon detected. To calculate the mutual information in 

each transmitted photon, losses in our drivers must be considered. These include coupling losses in single-

mode fibers 55%, failure losses in SLM 24%, spectral filters 30% and losses in detectors due to limited 

quantum efficiency 5%. This results in a channel capacity of 0.1 bits per photon. 

 

                                   Figure 4: Mutual information I(X;Y) is function of size  

 

Figure4 shows that interdependence of mutual information and the average probability of collision in 

the correct symbol as the skin of the detection areas are shown. The blue circles represent the Imax concept 

without any noise or interference. The red dots correspond to the mutual information for 8*8 and 12*12 

pixels. Theoretical mutual information is shown in gray bars, modified for the ratio of photons with the 

number of signals to the darkness between 10 and 100. As shown in the figure, green + markers indicate 

the average collision probability in the correct area for a finite focal diameter with an FWHM of 8 pixels.  
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Discussion 

 For useful communication, incoming message errors must be corrected. An efficient method for 

error correction is value check (LDPC) [44]. All set symbols must be translated to a bit string to apply this 

error correction. So we encode our symbols' x and y positions independently, which each take-up half of 

the bits. Since the predominant noise expression is the interference between neighboring symbols, we use 

a gray code [45] for each direction. This causes a bit to be misdiagnosed by a neighboring symbol, either 

in the x or y direction. Figure 4.4 shows the bit error rate (BER) after error correction with LDPC versus 

BER of the received bit string. LDPC code was set on halved LDPC used in the digital television broadcast 

of standard DVD (2B-S). The washed vertical bars indicate the estimated error in the case of 8*8 and 12*12. 

Estimation takes into account the measured interference between symbols. Their left and right edges show 

the ratio of photons to the number of signals in darkness, 100 and 10, respectively. The ICCD used in this 

measurement is equal to 10.07. Other commercial ICCDs have ratios close to 100, which explains the choice 

of another limit. It is clear that a standard error correction code now allows for error-free practical 

communication with the current system. 

Figure 5: The decoded bit error has a relationship with the received bit error  

 Figure 5 shows that the bit error rate (BER) of the received bit string versus the BER of the bit string 

after performing the error correction is shown in the figure. The diagonal dashed line shows the result 

without error correction. The vertical bars represent the estimated error of our experiment in 8*8 (green) 

and 12*12 (blue). Their left and right edges show the ratio of photons to the number of signals in darkness, 

100 and 10, respectively. 

 

Conclusion 

 As a result, we show the high-dimensional encoding of single photons of up to 10.5 bits per photon. 

The capacity of this spatial encryption is limited only by the optics and the number of pixels in the detector. 

0.1-bit channel capacity can be increased by reducing system losses. The main contribution of losses in our 

operation is due to the low quantum efficiency (5%) of ICCD, which can be improved up to 30% with 

different photocathode materials. This makes it possible to reach a signal ratio of 100 and bring the 
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measured values closer to their theoretical maximum. Our results are directly applicable to open space line 

communications. If the wavefront distortion in multimode fibers can be controlled [46, 47], a second and 

potentially stronger carrier for this high-dimensional encoding can be achieved. A promising way would be 

to implement a large encrypted spatial alphabet for distributing quantum keys or locking large quantum 

data [48, 49]. 
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