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ABSTRACT 
In this paper, the density matrix equations for a v-type three-level system are introduced; the 

relationship between the two types of decay rates, the spontaneous decay rate of the net population of 

levels and the decay rate of the dipole moments are explained here. The phenomenological part of the 

equations resulting from these decays is discussed. These concepts can be generalized to four- or more-

level atoms. 
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Introduction 

The most important tool in the assessment of phenomena such as bipolarity, electromagnetically 

induced transparency (EIT), and lasing without inversion [1], or writing fundamental equations of Bloch 

for two-, three-, or four-level atoms [2], is the formulation of the density matrix. The core of this set of 

equations is the Liouville equation, which deals with the time evolution of the net population of equilibria 

and the population of dipoles resulting from permitted and forbidden transitions, but each of these 

equations consists of two main parts: the first part includes terms resulting from the interaction of the 

electromagnetic field with an atomic system that is obtained directly by the Liouville equation of motion 

[3], and the second part includes terms that result from the spontaneous decay of the levels with a rate of 

 and the decay of dipole moments with a rate of    . These terms, which are the effect of quantum ه 

interference, are often added to the density matrix equations phenomenologically. We introduce this 

second part of the equation while introducing a v-type three-level atomic system. 

Three-level atomic system and density matrix 

Consider an electron at a lower level |    with the wave function of   ; the expected value of the 

position of this electron is constant until the transition occurs and the electron does not radiate. But when 

the electron is excited to the higher level of |  , the position of the electron fluctuates with the frequency 

of   
     

 
, and the expected value 〈   is no longer constant. The general condition required for an 

atom to radiate in an excited state is that the integral ∫      
   

 

  
 is not zero. Because the intensity of 

radiation is proportional to this integral. Transitions for which this integral is finite are called permitted 

transitions, while if the value of this integral is zero, that transition is called a forbidden transition. 

Consider a v-type three-level closed-loop atomic system as shown in Figure 1 [4]. In this atom, the 

two higher sublevels |   and |   with the base level |   are paired by a single-mode laser field with 

amplitude ε and angular frequency ω. The resonant frequencies between the higher levels |   and |   and 

the base level |   are     and    , respectively. 

    is also the frequency difference between the excited levels, i.e.             
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Figure 1 

The density matrix equations for the mentioned system are as follows: 
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The last two terms of equations (1) to (5) of the Liouville equation of motion are obtained by 

considering the Hamiltonian disorder as          ( ) in the interaction image. But how are equations 

(6), (7), and (8) and the first two terms of each of equations (1) to (5) obtained? First, in order to add the 

decay of spontaneous radiation-dependent atomic levels, we consider two categories of decay; one is the 

decay of the net population of equilibria with the decay constant  ه due to spontaneous radiation, and the 

other is the decay of electrical dipoles with the decay constant    . These decay terms, which are 

dependent on quantum interference, are often added to the density matrix equations as phenomenological 

phenomena that are the effect of quantum interference. To understand the relationship between these two 

types of decay, consider the following: 

Consider two levels |   and |   so that |   is the higher level and |   is the lower level; the dipole 

moment between |   and |   has a population twice the population of |   alone. According to Figure 2, 

we assume that first the base level |   is completely full and |   is completely empty, that is, we consider 

the electrons of level |   with their corresponding holes in |  . By starting the pump process, which is 

done by a laser electromagnetic field, an ensemble of electrons transitions from |   to |  , resulting in 

their corresponding holes in |  , and because the transition process is accompanied by spontaneous 

irradiation of electrons, we can consider the approximation that in equilibrium the number of electrons in 

each level is equal (for example, we have N electrons in each level and therefore 2N dipole moment with 

opposite directions between the two levels). This means that in the decay of bipolar moments, half of 

them are destroyed by excitation from |   to |   and the other half are destroyed by emission from |   to 

|  . However, population of the level |   is only the result of the excitation process and the decay of the 
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population |   is only the result of the emission process. So the bipolar moments in the decay process are 

half the share of the decay of the net population at the level |  , which is dependent on spontaneous 

radiation. For example, according to equation (7), we have the following for the decay rate of bipolar 

moments:     
  

 
  . Note that in the decay process of bipolar moment, when it decays, its direction 

changes in the opposite direction, so it is no longer the previous bipolar moment, although another has 

been created. 

 

 
Figure 2 

The complete term of     in equation (7) is:     
  

 
    . To write the second term of the equation, 

we consider that when the population of electrons is pumped by a laser electromagnetic field from a lower 

level to a higher level, if           is equal to the frequency of the laser light, ω, the resonant effect 

causes the electrons to be precisely excited to level |  . But if ω     , or in other words         

and    , so that   is called mistuned laser field, then the electrons are excited to a level slightly lower 

than |   level; as a result, they are weak and tend to radiate. So in the calculation of    ̇ , factor ∆ 

represents the weakness of these electrons, which is an interfering factor in the decay process. 

As the nature of ∆ is frequency and inverse of time, therefore, it has the nature of the decay rate and 

has the dimension    . Also, this share of decay, which is dependent on mistune, has a phase difference 

of 
 

 
 from the share of   , which is dependent on spontaneous radiation. Clearly, the higher the pumping 

rate, the more effective will be   from the spontaneous radiation, resulting in a decrease in the share of 

spontaneous radiation. so this process of inverse change presents     as a complex quantity of which the 

imaginary part is  . For example:     
  

 
     or     

  

 
    . 

In Equation (8), the first term (
     

 
) states that the change in the population of the moment     

depends on the change in the population of the moments     as well as    . To write the second term of 

Equation (8), we explain the concept of coherence. The main non-diameter elements of the density matrix 

represent the atomic polarization or moment population of the system's electrical dipoles, which is a 

measure of quantum coherence between levels. Coherence means the transition between two states 

achieved by coherent overlap between them. For an atom of two levels, the wave function is written as 

follows: | ( )    ( )|     ( )|   where    and    are the amplitude of the atom in the states |   
and |  . 
   and    are the slopes of the slow-wave amplitude function:       

     and       
    . The 

coherence between states |   and |   can be described as   
    

  (     ). If the phase relation (   
  ) t = constant survives, coherence is obtained between the two states [4]. If the level |   has a wave 

function with a number of    peaks per time unit and the level |    has a wave function with a number of 

   peaks per time unit, after the interaction of these two waves we will have a number of       peaks 

per time unit (this is reminiscent of the phenomenon of pulsation between two waves in the classical 

mode), which is equal to the rate of transition from |    to |  . 
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This is why, if the laser wave with the ∆ mistune causes a transition and weak level lower than the 

original level, the electrons will decay at the same rate as they were excited. Now in this three-level 

system, instead of ∆,          , is responsible for the decay rate between |   and |  , because the 

laser field is not applied between the two levels as the transition |                 |   is forbidden. The dipole 

moments      and      are unstable, and the electron excited from |   to |   eventually decays to |  , or 

the electron emitted from |   to |   eventually decays to |  . When the transitions |                 |   and |                 
|   are not effective, the term      will be effective. Because the moments     and     are not stable, 

they decay rapidly at the same rate at which they were excited (at the rate    ). It is clear that if the 

transitions |   to |    and |   to |   are effective, the term      will not be effective, then this term will 

have a phase difference of 
 

 
  with the first sentence of Equation (8), i.e. 

     

 
. But how the second term in 

Equations (1) to (5) are obtained: 

We start with Equation (3).    ̇ is the temporal variation of the transition polarity |1  to |3  or in other 

words, it represents the population changes of     moment. We can assume that if an electron in the level 
|   is transferred to the level |   it can move in the path |   to |   to |  , i.e. it may first move to the level 

|  . This electron, which goes to |   with a rate of    , affects the population of     moments by 

multiplying     by     with a negative sign, because this electron eventually will reduce the population of 

    moments by passing from |   to |  . The same reasons can be applied in the second term of Equation 

(4) in which the electron is transferred along the path |   to |   to |  . In Equation (1) the level |   
population decreases under two processes: one is decay of |   to |   with the decay rate of    calculated 

in the first sentence and the other is that the level |   population changes depending on the decay of the 

dipole moments     and    , i.e. the electron in the level |   falls to its hole at |   or vice versa. Since the 

transitions of |                 |   are forbidden, the result is that an electron that has gone from |   to |   or 

vice versa will eventually decay to |  . Therefore  ̇   will be affected by the decrease in population of 

inductive moments     and    , i.e. for the second part of change of population     we have:     (    
   ) and the same reasons are true for the second term of Equation (2),  ̇  . Type equation here. But in 

Equation (5), the population change of the moments     is affected by the population change of the levels 
|   and |   with the decay rate    . Note that to change the permitted population of transitions, the path is 

two-channel and that path contains two excitations, or two emissions, or one excitation and one emission, 

so that a channel must contain a forbidden transition (excitation or emission) that ultimately results in a 

permitted transition. Now we can not introduce this two-channel path to change the population of the 

forbidden transitions     and    . For example, to form the moment    , the path |   to |   to |   is not 

possible because both channels are permitted transitions that are independent and have no effect on each 

other, so the change in the population of the forbidden moments is effective from the change in the 

population of the levels, albeit with the a rate of    . This means that the change in the population of 

forbidden moments,  ̇  , Is directly effective from the decay rate    .    , which we call the forbidden 

moment decay constant, has an indirect contribution to    ̇ . Note that even if a term in the form         is 

present in Equation (5), this expression is almost zero because both      and     are very small quantities. 

Relationship between decay constant     and decays    and    

The relationship between the decay constant of dipole moments,    , with the decay of the net 

population of the levels    and    is obtained from the following relation [5]: 

          ∑[   ⃑⃑ ⃑⃑ ⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑ ( )]  *   
 ⃑⃑ ⃑⃑ ⃑⃑      

 ⃑⃑ ⃑⃑ ⃑⃑ ( )+    (    )

  

 

So that    
(        )

 
 and    

  

 
 and    

  

 
. 

k is the vector of a radiant photon, s is its polarity, and    ( )⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ is the mode function of multi-mode 3D 

vacuum field written as: 
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(r) = (
  

     (  ) 
)

 

 
    ̂   

       ⃑⃑ ⃑⃑ ⃑⃑  

Which is evaluated in position r of radiative dipole moment. For vacuum modes we use the flat wav 

(r)    ⃑⃑ ⃑⃑ ⃑⃑ . The unit vectors    ̂ and    ̂ are orthonormal so    ⃑⃑ ⃑⃑ ⃑⃑   is perpendicular to    ⃑⃑ ⃑⃑ ⃑⃑  . 
According to what we have said before, the spontaneous decay rate is twice that of the bipolar moment 

decay rate, i.e. we have: 

          *(   ⃑⃑ ⃑⃑ ⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑  )(   
 ⃑⃑ ⃑⃑ ⃑⃑      

 ⃑⃑ ⃑⃑ ⃑⃑  )  (   ⃑⃑ ⃑⃑ ⃑⃑      ⃑⃑ ⃑⃑ ⃑⃑  )(   
 ⃑⃑ ⃑⃑ ⃑⃑      

 ⃑⃑ ⃑⃑ ⃑⃑  )+                       (for   =   ) 

     *(   ⃑⃑ ⃑⃑ ⃑⃑     ⃑⃑ ⃑⃑ ⃑⃑  ) (   
 ⃑⃑ ⃑⃑ ⃑⃑     

 ⃑⃑ ⃑⃑ ⃑⃑  )  (   ⃑⃑ ⃑⃑ ⃑⃑     ⃑⃑ ⃑⃑ ⃑⃑  ) (   
 ⃑⃑ ⃑⃑ ⃑⃑     

 ⃑⃑ ⃑⃑ ⃑⃑  )+ 

And also: 

The angles between the dipole moments and    ⃑⃑ ⃑⃑ ⃑⃑   and    ⃑⃑ ⃑⃑ ⃑⃑   are shown in Figure (3). By scalar 

multiplying in the above relations we will have: 

     [(        ) (   
      )  (        ) (   

     )]  
     |   |

                                                                                                                                  ( )                                
     |   |

                                                                                                                                (  )                               
     [(        ) (   

      )  (        ) (   
      )]                                                                                

     |   | |   
 | [                   ]   |   | |   |    (   )            (  ) 

 

 

We put: θ =    , where θ is the angle between    ⃑⃑ ⃑⃑ ⃑⃑  and    ⃑⃑ ⃑⃑ ⃑⃑   
 

     
   ⃑⃑ ⃑⃑ ⃑⃑     ⃑⃑ ⃑⃑ ⃑⃑ 

|   ⃑⃑ ⃑⃑ ⃑⃑ | |   ⃑⃑ ⃑⃑ ⃑⃑ |
 

 

Then, by comparing equations (9) and (10) with equation (11), we obtain the final result: 

 

    
√     
 

(
   ⃑⃑ ⃑⃑ ⃑⃑     ⃑⃑ ⃑⃑ ⃑⃑ 

|   ⃑⃑ ⃑⃑ ⃑⃑ | |   ⃑⃑ ⃑⃑ ⃑⃑ |
)                                                                                                         (  )                            
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Figure 3 

Conclusion 

In this paper, we discuss the phenomenological part of the density matrix equations that result from 

decay. According to what has been said, the rate of spontaneous decay is twice that of the rate of decay of 

bipolar moments, and the decay path to change the population of permitted bipolar moments is two-

channel, so that one channel must belong to the forbidden transition (excitation or transition). But to 

change the population of forbidden bipolar moments, we can not introduce such a two-channel path. 

Finally, we have explained the relationship between the dipole moment decay constant     with    and   . 

This relationship is in the form of Equation (12). 
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