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ABSTRACT 
The purpose of this study is to support the integrated decision-making at the strategic, tactical, and 

operational levels of a perishable products supply chain so that the disruption effects are diminished at 

the lowest cost using resilient and proactive strategies. Thus, a bi-objective mixed-integer programming 

model with the objective functions of cost minimization and network resilience maximization is developed 

to design a network for the production and distribution of perishable products under uncertainty 

conditions. The two strategies of resilience in this study are supplying raw materials from reliable 

suppliers and increasing production capacity in production facilities. In the proposed formulation, the 

scenario-based robust optimization approach is used to model the conditions for dealing with uncertainty. 

Moreover, given the lack of sufficient information in the proposed model, the demand parameter is 

considered as a fuzzy parameter. Given the NP-hard nature of the proposed model, the Multi-Objective 

Particle Swarm Optimization (MOPSO) algorithm and the Non-dominated Sorting Genetic algorithm-II 

(NSGA-II) are applied to solve medium- and large-scale problems. The computational results indicate the 

efficiency of these methods in solving the mathematical model, especially on large scales. The validation 

of the proposed robust optimization approach is performed through comparing its performance against 

the expected value approach. 

Keywords: Supply chain, location-routing-inventory, robust optimization 

 

Introduction 

Nowadays, the significance of designing and planning supply chain networks (SCNs) has attracted the 

attention of many scholars and decision-makers in different industries given the existing competitive 

market. The purpose of the supply chain is to create the maximum total value for all the elements involved 

in it from the customer to the first supplier. Designing a distribution network is one of the most significant 

issues in logistics management, involving facility location, vehicle routing problem, and inventory 

management. As each of these decisions affects the other decisions, introducing integrated approaches that 
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include all decisions simultaneously, which can lead to more effective logistic network management, seems 

necessary. Moreover, in some industries like those related to perishable products, integrated chain activities 

directly affect achieving profitability of the supply chain. Thus, integrated and simultaneous planning at 

various levels is of paramount significance because of providing good conditions for the storage and 

transportation of perishable materials. In designing and planning supply chain networks, it has to be noted 

that because of severe environmental changes, one cannot expect that all the parameters in the problem will 

be available definitively (Zhen et al., 2016). Given the increasing significance and complexity of supply 

chain management for organizations in today's disruptive environments, it is necessary to anticipate and 

provide the necessary resilience capabilities to deal with or prevent disruptions in the activities of the 

organization (Christopher and Peck, 2004). The purpose of supply chain resilience is to stop the chain from 

moving into unfavorable conditions and to restore the supply chain after a disruption occurs in the shortest 

time and at the lowest cost possible. 

De Keizer et al. (2015) showed that if products deterioration rates are excluded in the decision to design 

a supply chain of perishable materials, low-quality products will be delivered to customers and thus will 

not lead to the achievement of the desired level of service and additional waste will be produced in the 

network. In another study, De Keizer et al. (2017) considered the rate of gradual deterioration of the quality 

of perishable products and their heterogeneous nature over time in logistics planning. Yu and Nagurney 

(2013) included the possibility of continuous decay of products in the supply chain into a network-based 

food supply chain model. Given the dependence of shelf life and product quality on the storage conditions, 

Firoozi et al. (2013) examined the exchange relationship between inventory maintenance costs and storage 

conditions. Alkaabneh et al. (2020) studied a routing-inventory problem in the field of perishable products 

supply chain to maximize supplier profits and minimize associated costs with fuel, maintaining inventory, 

and greenhouse gases emission. Zulvia et al. (2020) examined a vehicle routing problem for perishable 

products for minimizing operating costs as well as costs associated with emissions of perished products and 

reaching customer satisfaction. Zahiri et al. (2014) examined designing an organ transplant network 

considering how long it can stay out of the body. Diabat et al. (2019) used a two-objective scenario-based 

model based on robust optimization to design a real blood supply chain to avoid random disturbances in 

facilities and routes in chain planning. Hosseini-Motlagh et al. (2020) developed a dual-purpose, two-stage 

model based on possible scenarios for determining location and allocation decisions as well as inventory 

management in the blood supply chain. Jabbarzadeh et al. (2018) proposed a two-phase approach to 

designing a stable and resilient supply chain. Ambrosino and Scutella (2005) studied a single-product, four-

tier supply chain. In the model proposed, routing cost is assumed to be approximate and the inventory cost 

nonlinear. Ma and Dai (2007) studied the problem of location-routing-random inventory in logistics 

distribution systems. Chao et al. (2019) examined a two-stage location-routing-inventory problem with time 

window constraints for perishable products. The first stage of the proposed model includes a location-

routing-inventory problem and the second stage, a limited-capacity transportation problem of vehicles. 

Considering the concept of time window requirements, Manavizadeh et al. (2020) modeled the customer 

satisfaction function on a location-routing-inventory problem. 

According to the points raised, the most significant research gaps in the planning of supply chains of 

perishable items include non-addressing operational and disruptions risks simultaneously, non-use of 

resilience strategies against disruptive events, lack of stable and flexible supply chain design, lack of 

studying the relationship between total cost and level of financing and lack of integration of strategic, and 

tactical and operational decision-making levels. The study tries to provide a robust and flexible 

mathematical model for managing the flow of perishable items across a multi-level supply chain and multi-

product to respond to the research gaps obtained. The model studied has two objective functions: total cost 

minimization and improving the level of resilience, and assumptions like the possibility of partial and 

complete disruptions at the suppliers, decision-making in an uncertain environment, and considering the 

possibility of facing shortages in different decision-making periods. The proposed model and its solution 

approaches will be explained in more detail in the next sections. 
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Methods 

The study examined a location-routing-inventory problem of perishable products under operational and 

disruption risks to determine the best possible way of managing these products along the chain. In other 

words, the location of the supply chain network facilities, the supply policy, the inventory control in these 

facilities, and the route of delivery of products to customers must be determined in such a manner to ensure 

the resilience and stability of the chain in conditions of uncertainty. 

1. Structure of the supply chain of perishable products 

A four-level supply chain network is examined in this study. Such a network includes levels of raw 

material suppliers, production centers, product distribution centers, and end customers. Unlike previous 

models, besides making decisions about facility location and material flow routing, the study modeled the 

problem by considering inventory control decisions. We take into account the following assumptions for 

our proposed model to determine the study scope: 

• Different supply disruption scenarios with specified occurrence probabilities are included in the 

problem. 

• Among the suppliers, some suppliers are not affected by disruptions and can meet all their supply 

commitments considering the mechanisms adopted by them. 

• Unlike the suppliers and production facilities, the location of distribution centers is unknown and is 

determined by the proposed model. 

• There is the possibility to increase the capacity in the production facilities. 

• Products are perishable and have a limited shelf life. 

• Members of the first three levels of the chain have capacity constraints. 

• Various capacity levels can be used in the construction of distribution facilities to increase their 

utilization rates. 

• Customers' demand is uncertain and follows certain fuzzy distributions. 

• There is a possibility of partial back-ordering so that if a customer's demand is not satisfied during a 

certain period, it will be satisfied in the next period. 

• The vehicles used at each level are homogeneous in terms of capacity. 

2. Robust optimization model for the supply chain of perishable items 

It is necessary to first define the symbols used in the model to formulate the problem. Tables (1) to (3) 

introduce sets, parameters, and decision variables of the problem. It has to be noted that fuzzy parameters 

are distinguished from other parameters by ~. This model is formulated based on the model presented by 

Ghorbani and Jokar (2016). 
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Table 1: Mathematical model sets 

Symbol Definition 

a A  Raw material suppliers 

a A A   
Reliable suppliers (Safe from disorders) 

m M  Production centers 

d D  
Distribution centers 

k K  Customers 

r R  Types of raw materials 

p P
 

Types of final products 

l L  Facility capacity levels 

t T  Periods  

v V  Vehicles used to move materials between distribution centers and customers 

s S  Supplier disruption scenarios 

Table 2: Mathematical model parameters 

Symbol Definition 

pkbc
 

Penalty paid to the customer k because of demand backlog for the product p 

dlec
 

Construction cost of distribution facility d with capacity level l 

mac
 

Cost per unit of capacity increase in production facilitation a 

1

rmhc
 

The cost of maintaining each unit of inventory from the raw material r per unit time to facilitate production m 

2

pdhc
 

The cost of maintaining each unit of inventory of the final product P per unit time in facilitating distribution d 

pmmc
 

Production cost per unit of product P in production facilitation m 

rapc
 

Cost per unit of raw material r provided by the supplier a 

ijtc
 

The cost of transporting products from the initial node i to the final node j 

pktq
 

The amount of product P demand by the customer k in the period t (fuzzy parameter) 

dldw
 

Operational capacity facilitating distribution d by capacity level l 

mmw
 

Production capacity facilitating production m 

rasw
 

Maximum operating capacity of the supplier a in the supply of raw material r 

aslw
 

Coefficient of reduction of the raw material supply by the supplier a under the scenario s 

vvw
 

Vehicle capacity v 

maxD  
Constraint on the number of distribution facilities constructed 

1

r  
Lifespan of raw material r 

2

p
 

Final product life P 

rp
 

The raw material r needed to produce a unit of the final product P 

  Weight ratio of long-term costs 
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Table 3: Mathematical model decision variables 

Symbol Definition 

dlX
 

If distribution facility d is constructed with capacity level I, it is 1 otherwise zero 

mY
 

The rate of increase in capacity in facilitating production m 

ijpvtsZ
 

If the communication route 
i j

 is part of the vehicle route v for the delivery of the final product P in the period t 

and under scenarios, it is 1 otherwise zero 

1

rmtsU
 

The raw material inventory r to production facilitation m at the end of period t and under the scenario s 

2

pdtsU
 

The amount of inventory of the final product P in facilitating distribution d at the end of the period t and under 

scenario s 

1

amrW
 

The value of the order from supplier a for raw material r by production facilitation m 

2

mdptsW
 

The amount of order from production facilitation m for the final product P by facilitation of distribution d in period t 

and under scenario s 

3

dkptsW
 

A part of the customer k order for the final product P that can be supplied by distribution facilitation d over the period t 

and under scenario s  

pkdtsB
 

A part of the customer k order for the final product P that cannot be supplied by distribution facilitation d over the 

period t and under scenario s 

pkvtsE
 

A part of the customer k order for the final product P that backlogs in the vehicle path v in the period t and under 

scenario s 

kpvtsG
 

A non-negative auxiliary variable used to delete sub-tours 

The first objective function of the robust optimization model in Equation (1), to minimize the total costs 

in the system, is formulated through random variables, s , s  , rmts 

 , and rmts 

.  

    (1) 1 ( ) 2s s s s s s s s rmts rmtss S
s S s S s S r R m M t T

Min f x p p p p       

  
     

    
         

    
     

 

The second objective function in Equation (2) maximizes the level of chain resilience, which is the sum 

of the weight adopted by each of the three resilience strategies. 

    (2) 

 

1

2 1

1

2

 ( )
amr

a A m M r R

amr

a A m M r R

m

m M m m

W

Max f x w

Max W

Y
w

Max Y mw

  

  



 
 
 
  
  

  

 
    

  

  


 

Equation (3) shows the stochastic variable s  in the first objective function, which includes the costs of 

constructing facilities and the costs of increasing production capacity in the first component. The costs of 

supplying raw materials in the second component, the products production costs in the third component, 

inventory maintenance costs in the fourth component, fines related to the backlog of customer orders in the 

fifth component and material transportation costs in the sixth component. 
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    (3) 

  

1

2

1 1 2 2

s dl dl m m

d D l L m M

ra amr

r R a A m M t T

pm mdpts

p P m M d D t T

rm rmts pd pdts

r R m M t T p P d D t T

pk pkdts

p P k K d D t T

ij ijpvts

i D K j D K p P v V t T

ec X ac Y

pc W

mc W

hc U hc U

bc B

tc Z

 
  

   

   

     

   

      

 
  

 





 





 

  

  

   



  
 

Constraint (4) calculates the value s . 

    (4) s s s s
s S

p 0 ; s    


    
 

Constraint (5) states that a maximum of one facility can be constructed at any potential location for 

distribution facilities. In the case of such facilities, the capacity of the facility can only reach certain levels.   

    (5) 1 ;dl

l L

X d D


  
 

Constraint (6) considers a high constraint on the number of distribution facilities to be constructed. 

    (6) 
max

dl

l L d D

X D
 


 

Constraints (7) to (9) show the capacity constraints of suppliers, production centers and distribution 

centers, respectively. 

    (7) 
1 ; ,amr ra

m M

W sw a A r R


   
 

    (8)  2 ; , ,mdpts m m

p P d D

W mw Y m M t T s S
 

     
 

    (9) 
3 ; , ,dkpts dl dl

p P k K l L

W dw X d D t T s S
  

     
 

Constraints (10) and (11) show the balance of input and output currents in production and distribution 

facilities. 

   (10)  
1 1 1 2

1
; , , ,rmts as amr rp mdpts rmts rmtsrm t s

a A p P d D

U U lw W W m M r R t T s S   


  

          
 

   (11)    
2 2 2 3

1 1
; , , ,pdts mdpts dkpts pkdtspd t s pkd t s

m M k K k K k K

U U W W B B d D p P t T s S
 

   

            
 

Constraints (12) and (13) show the fact that inventory control policy in production and distribution 

facilities is based on the limited life of products. 
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  (12) 1

1 2 ; , , ,

r

rmts rp mdp s

p P d Dt t

U W m M r R t T s S

 


   

      
 

  (13) 
2

2 3 ; , , ,

p

pdts dkp s

k Kt t

U W d D p P t T s S

    

      
 

Constraint (14) states that each customer can only be served once during each period. 

  (14) 
 

1 ; , , ,ijpvts

v V i D K

Z j K p P t T s S
  

      
 

According to constraints (15) and (16), the starting and ending points of each vehicle are a similar 

distribution center. 

  (15) 1 ; , , ,ijpvts

i D j K

Z v V p P t T s S
 

     
 

  (16) 0 ; , , , ,ijpvts jipvts

j K j K

Z Z i D v V p P t T s S
 

        
 

Constraint (17) shows the continuity of the vehicle's trajectory, so that if a vehicle enters a node, it must 

leave it. 

  (17) 
   

0 ; , , , ,ijpvts jipvts

i D K i D K

Z Z j K p P v V t T s S
   

        
 

Constraint (18) in the proposed model ensures the formation of sub-tours. 

  (18) 
1 ; , , , , ,ipvts jpvts ijpvtsG G K Z K i j K p P v V t T s S         

 

Constraint (19) shows the limitation of the capacity of vehicles. 

    (19) 
 

 
3

1
; , ,ikpvts jkpts pkvts vpkv t s

i D K k K p P j D p P k K p P k K

Z W E E vw v V t T s S


        

         
 

Constraint (20) states that if a customer's order is allocated by one of the distribution centers, there must 

be a delivery route from which the distribution center starts and includes the relevant customer. 

  (20) 
3 ; , , , ,dkpts dipvts ikpvts

i K v V

W M Z Z d D k K p P t T s S
 

      
 

Constraint (21) specifies the need to meet customer demand to the end of the decision horizon. 

  (21) 
3 ; , ,dkpts pkt

d D t T t T

W q k K p P s S
  

     
  

Constraints (22) to (24) calculate the amount of backlog orders in each period. 

  (22) ; , , , ,pkdts dipvts ikpvts

i K v V

B M Z Z d D k K p P t T s S
 

      
 



Designing a resilient supply chain network for perishable products under uncertainty conditions 

1089 
 

  (23) 
; , , ,pkdts pkvts

d D v V

B E k K p P t T s S
 

      
 

  (24) 
 

; , , , ,pkvts ikpvts

i D K

E M Z k K p P v V t T s S
 

      
 

Constraint (25) states that the amount of decision variables related to the inventory level and the amount 

of backlog demand at the end of the decision horizon must be equal to zero. 

  (25) 
1 2, , 0rmTs pdTs pkvTsU U E 

 

Finally, constraints (26) and (27) specify the binary and non-negative variables of the problem. 

  (26)  , 0,1dl ijpvtsX Z 
 

  (27) 
1 2 1 2 3, , , , , , , , , , , 0m rmts pdts smr mdpts dkpts pkdts pkvts kpvts s rmts rmtsY U U W W W B E G     

 

3. Model linearization 

By focusing on the developed mathematical model, we find that the proposed model in this study 

includes nonlinear expressions in the structure of the constraints (19), (20) and (22). The existence of 

multiplication of the problem decision variables in these constraints is the reason for the nonlinearity of this 

model. As the optimal solution of optimization problems in the commercial optimization software needs 

the presentation of a linear model, in this section, using auxiliary variables and new constraints, we linearize 

the model. For instance, Constraint (19) contains the term 
; , , , , , ,dipvts ikpvtsZ Z d D i K k K p P v V t T s S        

, which is the product of the two binary 

variables. The existing solution for linearizing this case is to define a new non-negative variable (
; , , , , , ,dikpvtsZZ d D i K k K p P v V t T s S       

), and replace it with the product of 

multiplication 
; , , , , , ,dipvts ikpvtsZ Z d D i K k K p P v V t T s S        

 in the problem 

formulation. Moreover, three new constraints have to be added to the problem. Constraints (28) to (30) are 

used for this purpose. 

  (28) ; , , , , , ,dikpvts dipvtsZZ Z d D i K k K p P v V t T s S        
 

  (29) ; , , , , , ,dikpvts ikpvtsZZ Z d D i K k K p P v V t T s S        
 

       (30)  1 ; , , , , , ,dikpvts dipvts ikpvtsZZ Z Z d D i K k K p P v V t T s S          
 

Other non-linearities in the model can be linearized with a similar approach.    

4. Facing the fuzzy parameters 

The study uses the chance-constrained planning approach to deal with ambiguous and fuzzy parameters 

(Pishvaee et al., 2012). This approach can control the degree of satisfaction in chance-constrained. 

However, at the same time the computational complexity increases as a constraint is added to the original 

model for each objective function. In general, necessary size-based chance-constrained programming is an 

efficient fuzzy mathematical programming approach based on robust mathematical concepts. For example, 

the required size of a fuzzy number can support different types of fuzzy numbers such as triangles and 

trapezoids, as well as enable the decision maker to give minimum limits of confidence to chance-

constrained. If 

      1 2 3
, ,pjt pjt pjt pjtq q q q

is a triangular fuzzy number and a greater than 0.5, then: 
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        (31)        1 2
1pjt pjt pjtNec q r r q q       

 

        (32)        3 2
1pjt pjt pjtNec q r r q q       

 

As is seen from Equations (31) and (32), the necessity measurement method, whereas converting fuzzy 

constraints to their definite equivalent, can control the level of satisfaction. Using Equation (32), Constraint 

(21) can be replaced with deterministic Constraint (33). 

(33) 
     3 23 1 ; , ,dkpts pkt pkt

d D t T t T

W q q k K p P s S 
  

       
 

5. How to display the solutions in the meta-heuristic algorithms 

A continuous solution structure is used to show the answer to the problem. The answer is shown using 

a matrix with R C dimensions, so that R is equal to the number of chain levels minus one, and C is the 

maximum number of members in each of the first three levels. Figure (1) shows the proposed structure for 

displaying the answers. We will explain the extraction of the decision variables of the problem.  

 

 

 

Max(||S||, ||M||, ||D||) 

Decisions related to suppliers 0.78 0.91 0.48 … 0.30 0.85 

Decisions related to manufacturers 0.93 0.11 0.19 … 0.14 0.02 

Decisions related to manufacturers 

distributors 

0.94 0.45 0.13 … 0.88 0.61 

Figure 1: Displaying the answer 

We select 
D

 number of cells in the third row of the matrix from the left in descending order and then 

specify the rank of each cell to determine the location of the distribution centers and their capacity. These 

rankings show the number of distribution centers. For instance, the first distribution center is ranked first. 

We need to convert the real values inside each cell into integer variables from 1 to 
L

 to determine the 

level of capacity proportional to each center. To this end, if the value inside a cell is in

 
1

, ; 1,...,
l l

l L
L L

 
 

    range, the distribution center corresponding to the cell with the capacity level 

will be constructed. According to the capacities obtained, we estimate the minimum number of facilities 

required to meet customer demand during each period and show it by 
minD . Obviously, the number of 

facilities built must be in the range 
min max,D D   . We use Equation (34) to establish such a condition, 

where   is equal to the average of the cells in the third row of the response matrix. 

  (34)  min max minD D D   
   

 

We first assign the customer closest to the first facility built to this facility, delete the relevant customer 

from the list of customers requesting service, and do this for all distributed facilities to determine the 

customers assigned to each distribution center and determine the service routes to them. After assigning the 

first customer to all the distribution centers, we assigned the second customer to them according to the 
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previous procedure and based on the distance factor. This process continues until all customers are assigned 

to the distributed distribution centers and the capacity of any of the facilities is not exceeded. 

The order can be allocated up to several times this amount and use the inventory maintenance policy in 

future courses to determine the pattern of ordering distribution centers to production centers, based on the 

total demand of customers allocated to each distribution center in a period. Determining the order 

fulfillment coefficient is based on a random integer in the developed algorithm. Note that if the order is for 

three periods, the next order must be placed in the fourth period. 

Decisions on the production facilities and suppliers are made in a manner similar to the approach 

discussed for distribution facilities. Note that these decisions are limited to allocation decisions only. 

Due to the NP-hard nature of the proposed model, MOPSO and non-dominated sorting genetic 

algorithm-II (NSGA-II) multi-objective algorithms are used to solve medium and large-scale problems. 

Results 

First, a number of sample problems are randomly generated in different dimensions and the results of 

the implementation of MOPSO and NSGA-II meta-heuristic algorithms are reported on these problems. 

These algorithms are coded in MATLAB (R2015a) in a PC with Intel Corei7 PC specifications with 8 GB 

of RAM and over 2 GHz CPU. The results obtained are compared with the results of the exact solution 

based on complex integer programming implemented in GAMS 24.1.3 software environment for sample 

problems with small dimensions to evaluate the validity of the proposed models and algorithms. 

The problem in question is discussed in different dimensions of small, medium and large, and the data 

related to the supply chain network in the sample problems are presented in Table (4). 

Table 4: Dimensions of sample problems 

Problem dimensions Sample  

Set  

Supplier  Manufacturer  Distributor  Customer  Period  
Product  

Scenario  
Raw  Final  

S
m

al
l 

1 2 2 2 5 3 2 2 2 

2 2 2 2 8 3 2 2 2 

3 3 3 3 10 4 3 3 2 

4 3 3 3 12 4 3 3 2 

5 3 3 3 15 4 3 3 2 

M
ed

iu
m

 

6 4 4 4 20 5 4 4 3 

7 4 4 4 25 7 4 4 3 

8 5 5 5 30 8 5 5 4 

9 6 6 6 40 9 5 5 4 

10 6 6 6 50 10 5 5 4 

L
ar

g
e 

11 7 7 7 60 15 6 6 5 

12 8 8 8 70 20 6 6 5 

13 8 8 8 80 20 7 7 5 

14 9 9 9 90 25 7 7 5 

15 10 10 10 100 30 7 7 5 

It has to be noted that the number of vehicles to deliver products to customers is determined based on 

the mathematical expectation of demand values and therefore we do not need to randomly generate this 

parameter in the problems based on the assumptions made in the modeling of the problem. Given the lack 

of sufficient information in the subject literature and the lack of a model similar to the proposed model, a 

uniform distribution in different intervals has been used to produce the rest of the required information in 

the problems. The intervals needed for uniform distribution to produce model parameters are presented in 

Table (5). 

Table 5: Uniform distribution intervals to generate model parameters 
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Parameter  Distribution intervals Parameter  Distribution intervals 

pkbc
 

Uniform [0.5, 0.9] ($) 
dlec

 
105 Uniform [1, 15] ($) 

1

rmhc
 

Uniform [0.3, 0.6] ($) 
2

pdhc
 

Uniform [0.4, 0.8] ($) 

pmmc
 

Uniform [1, 3] ($) 
mac

 
102 Uniform [1, 9] ($) 

rapc
 

Uniform [3, 5] ($) ijtc
 

Uniform [5, 40] ($) 

pktq
 

Uniform [10, 40] (ton) 
dldw

 
102 Uniform [10, 15] (ton) 

mmw
 

102 Uniform [10, 15] (ton) 
rasw

 
103 Uniform [0.5, 10] (ton) 

ralw
 

Uniform [0.1, 0.5] (ton) 
vvw

 
10 Uniform [9, 12] (ton) 

1

r , 

2

p
 

Uniform [2, 5] (day) rp
 

Uniform [1, 2.5] (ton) 

The uniform distributions specified in Table (5) are used to simulate the values of the problem 

parameters in the sample problems. Concerning the uncertain parameters (demand parameter) we first 

obtain the most probable value of this parameter based on the information in Table (5). Then two random 

coefficients are selected from the intervals [0.9 and 0.4] and [1.5 and 1.1], respectively, and by multiplying 

these coefficients in the probable value, the optimistic and pessimistic values of the parameter are obtained. 

Computational results of small sample problems 

We must first have a normalized weight combination of the objective functions to solve the problem in 

GAMS software. Figure (2) shows the optimal values for the objective functions in the form of a Pareto 

curve. 

 
Figure 2: Pareto curve obtained from solving problem instance 2 in GAMS software 

As Figure (2) shows, four Pareto solutions are obtained using different weighting coefficients. 

The results show that the increase in the level of resilience in the supply chain needs additional costs. 

Now the question is “What effect does addressing resilience have on supply chain network design?” A 

detailed study of Pareto solutions shows that increasing the level of resilience of the supply chain reduces 

the amount and costs of shortages in the system. Figure (3) shows that the shortages in the system decreases 

to zero, as the level of resilience increases. 

 

(0.4, 0.6) 
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Figure 3: Conflicting relationship between resilience level and deficit level corresponding to 

sample problem 2 

Table (4) reports the values obtained for the normalized objective function of small-scale problem 

instances obtained from the exact integer programming approach as well as the MOPSO and NSGA-II 

algorithms. It has to be noted that the meta-heuristic algorithms are run ten times for each problem instance 

and the average values obtained are used to compare their performance given the randomness of the initial 

population selection in the meta-heuristic algorithms. 

Table 4: The value of the normalized weight objective function and the computational time for 

small sample problems 

Sample problem 
GAMS MOPSO NSGA-II 

Objective function Time (s) Objective function Time (s) Objective function Time (s) 

1 0.249 2.37 0.250 25.18 0.252 28.37 

2 0.389 3076 0.395 35.52 0.392 36.33 

3 0.343 33734 0.351 52.79 0.347 57.60 

4 0.283 62009 0.294 62.81 0.297 71.26 

5 0.341 196028 0.350 75.64 0.360 83.59 

As Table (4) shows, the results of meta-heuristic algorithms are not optimal compared to the output of 

GAMS software. The results show that with increase in the dimensions of the location-routing-inventory 

problem, the average deviations from the optimal value increase. However, the NP-hard nature of the 

problem justifies the use of meta-heuristic algorithms. The computational time needed to solve the problem 

with GAMS software increases exponentially with increasing dimensions of the problem, whereas the 

computational complexity in the meta-heuristic algorithms increases based on a linear function which is 

one of the consequences of the NP-hard problem.  

Computational results of sample problems with medium and large dimensions 

We will continue to solve medium- and large-scale problems using MOPSO and NSGA-II algorithms 

given the proven efficiency of the proposed algorithms in solving small-scale problems. Table (5) shows 

that the two algorithms are evaluated based on two measures of number of Pareto solutions and Spacing 

Metric (SM) for medium- and large-scale problems. In addition, Table (6) compares the two algorithms 

based on Diversity Metric (DM) and Mean Ideal Distance (MID). Finally, Table (7) is the computational 

time needed for these algorithms. 
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Table 4: Number of Pareto optimal solutions and spacing metric for medium- and large-size 

problems 

Problem no. 
Number of Pareto solutions Spacing Measure (SM) 

MOPSO NSGA-II MOPSO NSGA-II 

6 3 5 0.4625 0.4328 

7 3 4 0.2802 0.1345 

8 4 5 0.8535 0.2286 

9 5 6 0.4245 0.3897 

10 4 5 0.4589 0.3549 

11 6 6 0.9825 0.8631 

12 8 8 0.8215 0.6617 

13 5 8 0.7448 0.6569 

14 9 10 0.6911 0.6562 

15 5 7 0.7389 0.7305 

Table 5: Diversity and mean ideal distance metrics for medium- and large-size problems 

Problem no. Diversity Metric (DM) Mean Ideal Distance (MID) 

 MOPSO NSGA-II MOPSO NSGA-II 

6 0 0.5612 0.8477 0.8931 

7 0.2001 0 0.9277 0.9987 

8 0.2748 0.6804 0.7505 0.7341 

9 0.4656 0.4578 0.8226 0.8995 

10 0.4532 0.6348 0.9575 0.9824 

11 0.7548 0.7984 0.8919 0.9357 

12 0.7456 0.8145 0.8321 0.8817 

13 0.6015 1 1 1 

14 0.6923 0.7997 0.7177 0.7506 

15 0.6610 0.6984 0.8025 0.8543 

Table 6: Computational time needed to solve medium- and large- size problems 

Problem no. 
Computational time (s) 

MOPSO NSGA-II 

6 130 152 

7 151 171 

8 163 186 

9 182 206 

10 196 229 

11 213 248 

12 231 232 

13 250 287 

14 284 317 

15 309 337 

As is seen from the tables, NSGA-II performed better than MOPSO algorithm in three metrics of number 

of Pareto solutions, diversity, and spacing. In terms of MID and computational time complexity, the 

MOPSO algorithm performed better overall than the NSGA-II algorithm. However, there are no significant 
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differences between the two algorithms in terms of computational time, and in some cases, NSGA-II has 

performed equally and even better than the MOPSO algorithm. 

Validation of scenario-based robust planning model 

Value of the Stochastic Solution (VSS) method will be used to evaluate the scenario-based robust 

optimization model in this study. The expected value of correct information shows the value of knowing 

the future. In this method, assuming that exactly a certain scenario occurs for each scenario, the objective 

function resulting from the application of that scenario is calculated. The objective function is then 

calculated according to the probability of encountering supply disruptions other than the predicted scenario. 

After considering all the scenarios, the expected value for the mentioned objective functions is calculated. 

Finally, the difference between the value obtained from the total cost objective function with random 

solution and the total cost obtained from above shows the “expected value of correct information.” 

The total cost in the scenario-based robust optimization approach compared to the expected value 

approach in problem instance 2 is shown for the various weights of variability (λ) in Figure (4). The results 

show the superiority of a robust approach. This advantage can bring about an eight percent improvement 

in total supply chain costs in λ = 8. It has to be noted that these results are based on solving the problem in 

GAMS software and weight coefficients of (0.5, 0.5).    

 
Figure 4: Cost performance of the robust approach compared to the expected value approach 

for different variability weights 

Conclusions 

he study examined the challenges like the significance of resilient supply chain structures against 

operational and disruption risks, integrated decision-making on location, inventory control, and routing 

problems, and many realistic assumptions about perishable products to make advances in research and 

implementation in supply chain management. A mathematical formulation was developed for periodic 

planning for perishable products in the context of supply chain network design. The developed model with 

a bi-objective structure is trying to increase the level of network resilience. The model was developed to 

determine decisions related to (1) the location of distribution facilities, (2) the level of inventory in the 

facilities, and (3) routing and volume control planning in a decision-making environment with uncertainty. 

In the proposed model, the scenario-based robust optimization approach was used for modeling the problem 

in conditions of uncertainty. Given the NP-hard nature of the problem, two meta-heuristic algorithms, 

namely Multi-Objective Particle Swarm Optimization (MOPSO) and Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) were developed to deal with high-dimensional problems. 

NSGA-II performed better than the MOPSO in three metrics of the number of Pareto solutions, diversity, 

and spacing in the majority of problem instances from various sizes. In terms of MID and computational 
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time complexity, the MOPSO algorithm performed better overall than the NSGA-II algorithm. Then, the 

expected value approach was compared with the solutions obtained from solving the model with the robust 

optimization approach to evaluate the performance of the proposed robust model. The results show that the 

robust approach performs better than the other method. Moreover, we examined the existence of a trade-

off relationship between the level of resilience and supply chain costs to identify opportunities to enhance 

chain performance while maintaining cost-effectiveness. 

In spite of the focus of the study on supply-related disruptions, supply chain networks not only face this 

type of disruptions but also production and transportation disruptions are a part of the chain uncertainties. 

To overcome such limitations, future studies should consider such issues. 
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