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ABSTRACT 
The big cases of quadratic assignment problem are still very challenging and no way has yet been 

discovered to find accurate solutions to this difficult problem. According to the results of artificial 

intelligence, which is an effective meta-heuristic method for solving many problems, it has been proposed 

as a suitable candidate to obtain optimal solutions to NP problems. Therefore, the proposed algorithm in 

this paper is hybrid of bee optimization and artificial intelligence as the first meta-heuristic algorithm with 

taboo search for quadratic assignment optimization. The powerful taboo search method is used to simulate 

the exploratory processes and exploitation of bees. According to the obtained results for the standard 

problems solved from the QAPLIB library by the proposed algorithm, the performance of the proposed 

optimization algorithm is quite competitive with the optimized algorithms that have been reported to date. 

Keywords: Bee Algorithm; Artificial Intelligence Algorithm; Quadratic Assignment; Optimization; 

Parallel calculations; Taboo Search. 

 

Introduction 

QAP in transportation systems, telecommunications, signal processing, typewriters, keyboard design, 

board wiring, layout, turbine balance, scheduling, data assignment, vendor scrolling, packaging, max group, 
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linear sorting and the graph partitioning problem [1] has been studied. Despite offering various solutions to 

this problem, QAP is still one of the most difficult hybrid optimization problems, and there is no precise 

algorithm for solving large-scale problems in practical computational time. 

The quadratic assignment problem (QAP) was first introduced by Koopmans and Beckmann in 1957 

[2]. The assignment problem is a set of facilities to a set of locations, so that the total assigned cost is 

minimized. QAP is in the NP-complete class and is one of the most difficult combinatorial optimization 

problems. There is no precise algorithm for solving problems larger than 35 locations with practical 

computational time. The smaller examples of the QAP problem can be solved with precise algorithms per 

minute/hour. However, due to its adverse behavior, the solution of larger QAP samples can take even 

hundreds of years to complete with a robust algorithm by a single processor. Therefore, many meta-heuristic 

algorithms have been proposed to solve QAP. The proposed algorithms are influenced by the fact that which 

can discover the optimal solutions in practical times. Artificial Bee Colony (ABC) is a meta-heuristic 

algorithm proposed by Darwish Karboga in 2005 [3]. 

The idea of using bees' social life to solve optimization problems has been presented by many 

researchers in different forms. Over the past decade, various algorithms have been developed using bee 

behavior patterns such as bee system (BS), BCO, ABC, MBO, Bees Algorithm, HMBO, Bee Hive, 

Artificial Bee Colony, and VBA algorithms to solve various types of optimized problems. ABC uses bee 

intelligence and population-based search methods. ABC uses common simple parameters such as colony 

size and maximum number of cycles to solve solvable problems (NP-Complete) such as visitor scrolling, 

scheduling, and finite optimization problems [5]. 

There are some new parallel ABC algorithms in the literatures. Subotic et al., have proposed three 

different parallel ABC algorithms. ABC parallel algorithms are in two independent parallel execution 

modes and two variations of several parallel particles. Using the independent parallel execution method, 

they are obtained faster than the ABC algorithm due to the high computability of multi-core processors. 

They show better results than the consecutive version of the original ABC algorithm. Communication 

methods improve solution quality with different ratios between exploration and exploitation. 

Chmiel and Kwiecien propose an evolutionary algorithm for QAP by quantum. They show how to adapt 

QAP such as crossover and mutation operators, and introduce quantum principles in specific procedures 

[6]. 

Yagmur et al., introduced a parallel version of Breakout Local Search (BLS) [7]. They use a Lunstein 

metric method to examine the similarity of new starting points. The proposed BLS algorithm (BLS-

OpenMP) combines multidisciplinary computations using OpenMP. Dokeroglu proposes Teaching-

Learning-Based Optimazation (TLBO) Algorithms to solve QAP [8]. People are trained with recombinant 

operators and later processed by a powerful Tabu search engine. Hyper Ebtekar has recently introduced an 

approach to solving the challenging NP-Hard combination optimization problem using a set of low-level 

innovative methods. Abdul et al., propose a way to improve the Whale Optimization Algorithm. 

The proposed algorithm is reinforced with local search. This algorithm has been tested in many cases of 

QAP and it has been reported that it obtains almost optimal solutions with reasonable execution time [9]. 

Kola et al., consider new cases of QAP polynomials with a specific diagonal structure. They acquire a new 

class of special solvable polynomial cases QAP [10]. Bogel et al., assign a linear model to a quadratic 

model. This is provided by a family of assignment-induced editing paths between nodes and shows that the 

graph editing distance is equivalent to QAP [11]. 

In this study, we were proposed a new parallel island algorithm to find better results for samples larger 

than QAP. Recently, much attention has been paid to the application of parallel metacognitive algorithms 

in many hybrid problems [12]. Meta-heuristic parallelization can significantly increase the efficiency of the 

optimization algorithm [13]. In this research, the behavior of worker, observer and scout bees is modeled 

using the distributed parallel computational paradigm and by selecting the search parameters comparatively, 

the ABC algorithm consisting of local and global search methods will be optimized. 

According to the above, the following objectives were pursued in this study: 

1. Solve quadratic assignment problem using an artificial bee colony meta-heuristic algorithm 

2. Optimize the search method by comparatively adjusting the parameters of the proposed method 



An artificial bee colony meta-heuristic algorithm to solve quadratic assignment problem (QAP) 

277 
 

3. Parallelization of the proposed meta-heuristic algorithm to increase efficiency 

Materials and Methods 

Problem modeling 

QAP can be formulated using the nxn, A, B, C matrices. 

𝐴 = (𝑎𝑖𝑘), 𝐵 = (𝑏𝑗𝑙), 𝐶 = (𝑐𝑖𝑗),                                                                                                                  (1) 

 

Where aik is the amount of current from facility i to center k, bjl is the distance from location j to location 

L, cij is the cost of installing facilities i at location j. The QAP form of Koopmans and Beckmann can be 

described as follows. 

𝑚𝑖𝑛𝜙∈𝑆𝑛
(∑ ∑ 𝑎𝑖𝑘𝑏𝜙(𝑖)𝜙(𝑘)

𝑛
𝑘=1

𝑛
𝑖=1 + ∑ 𝑐𝑖𝜙(𝑖)

𝑛
𝑖=1 )                                                                                         (2) 

 

Sn is the change in the number of numbers 1,2,...n. aikbϕ(i)ϕ(k) is the transfer cost from facility i in 

location ϕ(i) to facility k in location ϕ(k). 

ciϕ(i) is the cost of installing facility i at location ϕ(i) and the cost of transferring to all other locations 

k, which is determined at location φ(1), φ(2), ..., φ(n). In cases where there is no C expression, Lawler 

introduced the fourth cost array instead of the three matrices and obtained the general form of QAP [44]; 

 

𝑚𝑖𝑛𝜙∈𝑆𝑛
(∑ ∑ 𝑑𝑖𝜙(𝑖)𝜙(𝑘)             𝑛

𝑘=1
𝑛
𝑖=1                                                                                                           (3) 

The relationship to Koopmans and Beckmann's problem is as follows: 

dijkl = aikbjl(i, j, k, l = 1,2, … , n; i ≠ k or j ≠ l)                                                                                            (4) 

dijij = aiibjj + cij(i, j = 1,2, … , n) 

 

Proposed Method 

ABC is a population-based meta-exploratory optimization method. Bees make up the population of this 

algorithm and each bee is given the optimal solution (food source) of the QAP sample. It is assumed that 

each solution is a food source and the amount of nectar in each source indicates the quality of each solution. 

Our model uses three types of bees: worker bees, observers, and scouts. Scout bees are looking for food 

sources, and working bees go to the food source and return to the hive to share their information about the 

flight area. When the task of collecting nectar from the worker bee is completed, it becomes an observer 

bee and seeks new food sources. The observer bees watch the flight of worker bees and choose food sources 

depending on the flight. In the first stage, the initial population algorithm is created and after this process, 

the optimization is repeated using worker, observers, and scouts bees. Scout bees begin the search process. 

In our developed model, there is a single hive for ABC-QAP. In the parallel version of ABC-QAP, the 

number of hives is equal to the number of processors in the parallel computing environment. Also, each 

bee starts out as a scout bee and explores the QAP search space. After spending some time during the 

exploration process, he returns to the hive and shares his information. Then, by evaluating the results, they 

return to the best available food sources. 

Bees use various taboo search parameters (such as taboo list size and aspiration values) and begin 

abusing food sources in more detail. The number of scout bees in the exploration phase is 1000. This 

parameter provides a good balance between the exploration and exploitation steps. The best food source is 

selected after the exploration phase and exploited by the observing bees. 

Adjust the size of the taboo list and the amount of aspiration 

The size of a taboo list is an important parameter for finding optimal values. 

For each unit and location of QAP, the last iteration that occupies that location is stored in the list. 
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Small taboo-sized lists can cause searches to be processed in the same areas and be stuck in local 

optimization, while larger lists can prevent better research and lead to lower quality solutions. Due to the 

excessive size of the taboo list, optimization may do more repetition than necessary. The lower and upper 

limits of the taboo list size are set by Taillard to be between [0.9 x n - 1.1 x n] (where n is the size of the 

problem). 

Algorithm 1- ABC-QAP algorithm 

1 𝑠𝑡𝑎𝑟𝑡  

2 𝑠𝑐𝑜𝑢𝑡 𝑏𝑒𝑒𝑠 𝑠𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑓𝑜𝑜𝑑  

3 𝑠𝑜𝑢𝑡 𝑏𝑒𝑒𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑖𝑣𝑒 𝑎𝑛𝑑 𝑑𝑎𝑛𝑐𝑒  

4 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 𝑏𝑒𝑒𝑠 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑓𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒𝑠  

5 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑑 𝑏𝑒𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒𝑠  

6 𝑢𝑠𝑒 𝑡𝑎𝑏𝑜𝑜 𝑠𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑛𝑒𝑐𝑡𝑎𝑟 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 ℎ𝑖𝑣𝑒  

7 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑖𝑣𝑒  

8 𝑖𝑓(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  

𝑦𝑒𝑠 → 𝑓𝑖𝑛𝑖𝑠ℎ  

𝑁𝑜 → 𝑔𝑜𝑡𝑜 2  

These parameters are seen as average values that provide a reasonable execution time during the 

optimization process. The dynamic size of the taboo list between this value provides a very effective way 

to optimize the process and the amount of respiration [14]. Therefore, we use a technique that dynamically 

changes the size of the taboo list in this study. The aspiration value of the taboo search allows that solution 

to be implemented if a better move is found than the available solutions. The aspiration rate of the taboo 

search process is usually recommended according to classical methods. However, this value can vary 

depending on the structure of the problem; therefore, we propose a dynamic aspiration value in our study. 

Its value changes per 100,000 repetitions of taboo searches and can be a good way to search locally with 

smaller values. However, once the search process is stuck in the local optimization, the optimization must 

leave this space while preserving the previous experience (by eliminating the existing position of the current 

solution). A set amount of aspiration can provide such a mechanism. The value of our aspiration dynamics 

varies between [n - (n x n x 10)], smaller values of aspiration can search for spaces close to the current 

solution, while larger values provide a local optimal escape mechanism. In this way, a diverse space search 

is created with hundreds of processors which it optimized the same problem with different taboo list sizes 

and aspiration values. 

 

Rapid evaluation of neighbor solutions 

Swapping two different locations from an existing QAP solution and creating a new relocation is a very 

effective way to cross the QAP solution search space. This approach allows us to quickly calculate newly 

changed costs just by finding the difference cost. 

Formally, the calculation of the fit value of a QAP permutation is a function of the second order O(N2) 

when the calculation is done from the beginning, while when the difference between the two permutations 

is calculated, it is a function of the first order O (N). This method is used as a method to calculate the 

performance increase in our proposed algorithm, PABC-QAP. Taboo robust search uses a matrix to store 

the costs of each possible exchange, and these costs are added to obtain the cost of the new solution. 

Starting from solution φ, the neighbor solution π is obtained using units r and s: 

 

𝜋(𝑘) =  𝜙(𝑘)  ∀ 𝑘 ≠ 𝑟, 𝑠  

𝜋(𝑟) =  𝜙(𝑠)    
𝜋(𝑠) =  𝜙(𝑟)                                                                      (5)  
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Figure 1: Execution time of problem instance according to their sizes 

Figure 1 shows the execution times of the problems, from size 12 to 256. 10,000 neighbors are searched 

for problem instance using the quick assessment method. During execution, a linear increase versus time is 

observed, and this method provides a great advantage during the exploration and operation stages of ABC 

optimization. 

Parallel ABC algorithm for QAP 

For QAP problem instance, we need to develop a more robust and scalable parallel algorithm. Therefore, 

we propose the island parallel ABC optimization algorithm for QAP. In this algorithm, there is one main 

node (processor) and many slave node (sub-nodes) in the parallel computing environment. The name of the 

proposed algorithm is PABC-QAP. Each slave node in the computing environment works on a separate 

hive with a different set of bees (scout, observer, and worker). The PABC-QAP algorithm initiates a diverse 

exploration phase on each processor. This is generated randomly by using QAP permutation with initial 

onset. The seed mechanism in each processor is initialized with current processor time X#. 

This amount of seed is able to provide a good variety of permutations for each processor. During the 

exploration phase, the taboo search algorithm is executed with a small number of failures (100) and 1000 

restarts. This method of performing a taboo search with fewer repetitions provides a good way to explore 

the QAP search space. One thousand explorations are done with 255 processors. In total, 255,000 

exploration processes run in parallel. Due to the minimal connection between the processors, this algorithm 

is scalable and works almost at a high linear speed. In some problem instance where we cannot obtain the 

best/optimal values with ABC-QAP, it is possible to obtain the best values even in the exploration phase 

with the parallel PABC-QAP algorithm. For very difficult problems like tai100a and tai256c, we still have 

to spend most of our optimization time in the algorithm operation phase. Because the right balance between 

the exploration and operation stages of a process ensures efficient time optimization, we will perform 

experiments to understand exploration behavior in terms of time and deviation from the best results. 

After completing the reconnaissance phase of the scout bees, the best transfer is sent to the exploitation 

phase. Then, Taboo search starts optimizing the current solution with more restarts and crashes. After the 

optimization process in each slave processor, the results and execution time of the optimizations are sent to 

the main node. Slave nodes may go through different execution times due to the different optimization 

process in each node. The main node receives the results from the slave nodes and reports the best result as 

the result of the PABC-QAP algorithm. Algorithm 2 provides the details of the PABC-QAP algorithm. 
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Algorithm 2: Parallel PABC-QAP algorithm 

1 𝑠𝑡𝑎𝑟𝑡  

2 𝑠𝑐𝑜𝑢𝑡 𝑏𝑒𝑒𝑠 𝑠𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑓𝑜𝑜𝑑  

3 𝑠𝑐𝑜𝑢𝑡 𝑏𝑒𝑒𝑠 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑖𝑣𝑒 𝑎𝑛𝑑 𝑑𝑎𝑛𝑐𝑒  

4 𝑜𝑛𝑙𝑜𝑜𝑘𝑒𝑟 𝑏𝑒𝑒𝑠 𝑒𝑣𝑎𝑙𝑢𝑡𝑒 𝑡ℎ𝑒 𝑓𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒𝑠  

5 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 𝑏𝑒𝑒𝑠 𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑜𝑑 𝑠𝑜𝑢𝑟𝑐𝑒𝑠  

6 𝑢𝑠𝑒 𝑡𝑎𝑏𝑜𝑜 𝑠𝑒𝑎𝑟𝑐ℎ 𝑓𝑜𝑟 𝑛𝑒𝑐𝑡𝑎𝑟 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡𝑜 ℎ𝑖𝑣𝑒  

7 𝑐𝑜𝑙𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 ℎ𝑖𝑣𝑒  

8 𝑖𝑓(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)  

9 𝑦𝑒𝑠 → 𝑟𝑒𝑐𝑒𝑖𝑣𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑟𝑒𝑝𝑜𝑟𝑡 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑟𝑒𝑠𝑢𝑙𝑡 → 𝑓𝑖𝑛𝑖𝑠ℎ  

10 𝑁𝑜 → 𝑔𝑜𝑡𝑜 2  

Results of performance evaluation of the proposed algorithms 

During the simulation, we use QAPLIB (QAP Standard Problem Library) [48]. 134 problem instance 

are solved from QAPLIB standard problem instance [4]. Most modern algorithms use this library. Thus, it 

provides a fair platform for evaluating new algorithms. The problem instance of this library arise from real-

life or random applications (such as Manhattan distances from rectangular grids (Head12), hospital layout 

(kra30), and back wiring (Ste36a)). During the tests, each problem instance is tested 30 times and the 

average/best test results are reported. 

The simulations are performed on the HP ProLiant DL585 G7, which has a 2.6 GHz AMD Opteron 

6212 processor with 8 cores. It is possible to create 8 nodes per core (providing 64 possible cores 

simultaneously). Each processor has a 64-bit computing capacity and an AMD SR5690 chip. 

Impact of increasing the number of processors 

The number of processors has a major impact on the performance of the proposed parallel PABC-QAP 

algorithm. Figure 2 shows the deviation of the experiments in the tai50a sample as the number of processors 

increased (taboo search uses 1,000,000 number of failures and ABC uses 100 bees for the exploration 

phase). The experiments were repeated 30 times and their average value was reported. 

 

 
Figure 2: The effect of increasing the number of processors for the PABC-QAP algorithm 

The x-axis is the number of searches and the y-axis is the optimization deviation from the best library 

results. If a proper diversification mechanism is provided in each processor and the possible number of 
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processors is used, the probability of finding the optimal value is significantly increased. Of course, 

providing adjusted parameters is another important advantage of optimization. 

Our main goal is to ensure that the parallel environment can provide better tools while finding the optimal 

solution. The first thing to consider when examining parallel algorithms is to accelerate them. 

However, the proposed island parallel ABC algorithm works on multiple hives and optimizes 

independent solution candidates instead of parallelizing the calculation of a solution optimization effort. 

The latter can often be a very difficult task and cannot provide linear (near-linear) acceleration, while island 

parallel ABC can effectively consume its computational time. The result has a 1.1% deviation with a single 

processor for the given settings. The deviation is 0.57% with 255 threads, which work on different hives 

and are in the memory of each processor. During the tests, obvious improvement is observed and the 

performance is improved by increasing the number of failures and repetitions of the taboo search. 

 

Adjust the number of discoveries 

The number of discoveries has a major impact on the performance of the optimization process. Figure 

2 shows the deviation of some of the results for the tai50a problem by increasing the number of discoveries. 

Each excavation was performed 30 times. The problem instance of tai50a is a very difficult and medium-

sized issue in the library. The x-axis is the number of searches and the y-axis is the optimization deviation. 

 
Figure 3. The effect of the number of discoveries for the tai50a problem 

Starting from 1 to 130,000 explorations, we see the performance of the exploration process in 

optimization. In Figure 3, the dark markers are the results of the exploration, while the white markers are 

the results of the exploitation phase. Even the number of explorations has been done with 130,000 

repetitions so that we can start better from the start of operation; and 1000 repetitions with a reasonable 

execution time is a good value for exploration. With the number of searches increasing by more than 2000 

repetitions, no major advantage is observed. Therefore, we set the number of exploration activities as 1000 

for all problems. Of course, this optimal value is not difficult for all cases, but a simple parameter 

adjustment method for the balance between the exploration and exploitation stages. When the list size and 

taboo aspiration values are well adjusted in the operation phase of ABC-QAP, more failures work better. 

Results of implementation of problem instance in QAPLIB 
First, we solve a problem instance with ABC-QAP to get the least deviation from the best-known 

solutions reported in QAPLIB. If the best result is not achieved, we apply different taboo list and aspiration 

settings to the ABC-QAP algorithm. Next, we run the PABC-QAP algorithm with 255 processors and the 

settings given in Tables 4-2 to 4-5. 
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Name of problem instance, best known solution value (BKS) of problem instance reported by QAPLIB, 

best result (found), average percentage of deviation from best known solution (APD), best percentage of 

our result deviation from BKS (BPD), algorithm runtime time (s), number of processors used during 

optimization (#proc.), the amount of aspiration of the taboo search process are given in the tables. If the 

problem instance is optimized with the PABC-QAP algorithm, the number of processors in the tables is 

reported to be more than 255. Harder problem instance not solved by the ABC-QAP algorithm are tested 

with a parallel version with 255 processors. The average execution time and deviation are reported in the 

tables. 

Table 1 shows the four configurations of the taboo search algorithm that we use in our experiments. For 

small problem instance are applied configuration 1. For more complex problem instance, we mostly use 

configuration 2. Due to runtime constraints, we have to use configuration 3 for the tai256c problem instance. 

The size parameter of used taboo list in our experiments is provided by Taylard [15]. The range of aspiration 

values is used dynamically in the ranges given in Table 1. Setting 4 is used for the exploration step of the 

ABC-QAP algorithm. All problem instance in the QAPLIB library are solved during the experiments. 

 

Table 1: Taboo search parameters 
Configuration Max. failure Taboo list size Scope of aspiration 

1 50,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxn] 

2 50,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxnx10] 

3 20,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxnx10] 

4 1,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxn] 

 

The results for the 134 sample issues in QAPLIB are as follows: 

125 problems are solved optimally according to the results in the standard library. 105 AND 21 of these 

results were obtained and solved by ABC-QAP and PABC-QAP parallel algorithm, respectively.  

Problem instance bur, had, chr, els, esc, had, kra, lipa, nug, Rou, Scr, Sko (except sko100a) and Ste are 

solved with optimal ABC algorithms. The larger problems of taia and taib are the most difficult examples 

to deal with during simulation. The mean of the best reported deviations for tai problem instance is 0.092. 

In particular, tai50a, tai60a, tai80a, and tai100a have the highest deviation among all problem instance. For 

tai256c, we report one of the best results in the articles, namely 0.082% deviation. ABC algorithms spend 

most of their execution time on these problem instance. tai256c, tai150b and tai100a spend 71,129, 16,665 

and 10,379 seconds during optimization, respectively. 

Name of problem instance, best known solution value (BKS) of problem instance reported by QAPLIB, 

best result (found), average percentage of deviation from best known solution (APD), best percentage of 

our result deviation from BKS (BPD), algorithm runtime time (s), number of processors used during 

optimization (#proc.), the amount of aspiration of the taboo search process are given in the tables. 

 

Conclusion 

In this study, a combination of bee optimization algorithms and artificial intelligence for the quadratic 

assignment problem was proposed and we presented the new ABC optimization algorithms for QAP 

optimization. Accelerating these calculations using dynamic programming and parallel computing 

techniques ensures that the proposed algorithm explores/exploits more of the search space and thus has a 

better chance of finding better results at the same time. 

Termination criteria and parameter settings of the proposed algorithms are important issues discussed 

in our study. Of course, implementing algorithms with more repetition provides a better chance of finding 

better solutions. However, being stuck around the local optimum and the effect of parameter-adjusted 

settings are the most important factors in meta-heuristic algorithms when increasing the number of 

repetitions. In order to provide a mechanism to avoid being stuck in the local optimization, we developed 

a parallel version of the algorithm. In this way, processors work on various parts of the problem. 
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This technique reduces the likelihood of our algorithm being clogged in the local optimization. 

Parameter setting can also be another major problem of meta-heuristic optimization algorithms. Simple 

parameter setting techniques can provide significant improvements to these algorithms. 

The proposed ABC method works well for solving QAP. QAP large problem instance are still 

challenging. Therefore, we need to develop a parallel version (MPI) of the ABC algorithm. A distributed 

parallel memory version of ABC is provided. The path optimization method, taboo search, has been adapted 

to explore and exploit ABC algorithms. During the simulations, the taboo list and aspiration values of this 

local search method are adjusted to better optimize the results. Most benchmark problems are optimally 

solved with the new ABC algorithms. The right balance between exploration and exploitation provides 

better results. There are still good opportunities to get better results with higher number of processors, better 

tuning parameters, or new introduced exploratory techniques. As a first suggestion for future work, we can 

use ABC for other known hybrid problems. Many meta-exploratory methods have recently been introduced. 

Using parallel computing and adjusting their parameters at runtime can be interesting and has the potential 

to improve the solution of existing NP-Hard hybrid problems. The black box optimization performance is 

also an effective tool for evaluating the performance of new algorithms. This involves a wide range of 

benchmark problems. As a recommendation, this tool can be used to evaluate the performance of its new 

hybrid algorithm in the field of various problems. 
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