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ABSTRACT 
Optimal control problems convert into mathematical programming problems with the help of 

discretization and parameterization techniques. The present study aims to solve the problems of optimal 

control using the direct Rayleigh-Ritz method in solving a series of control problems in which first the 

required concepts and definitions are expressed and then it give a preliminary expression of the change 

account and then the Riley-Ritz method is used to solve examples of optimal control. 

Keywords: Optimal control, Calculus of variations, Riley-Ritz 

 

Introduction 

Direct methods are a set of techniques for solving optimal control problems that are based on obtaining 

the answer in terms of direct minimization (maximization) of the objective function to the constraints of 

the optimal control problem. These methods are used by converting the optimal control problem into a 

mathematical programming problem. There are advantages to using these methods. The first advantage is 

that optimized control problems with complex systems can be converted into optimization problems that 

are easier than the main problem. The second advantage is that there are advanced algorithms for solving 

mathematical programming problems and they can be used to find approximate answers. The third 

advantage is that it is easy to deal with different types of constraints. 

 

Basic Concepts 

Pontryagin principle 

n the early 1960s, Pontryagin and her Russian colleagues published a general principle called the 

maximum-minimum principle, which discussed not only continuous controls but also discontinuous 

controls. 
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Assume the value of the functional extremum J =∫ f0 
T

0
(x, u, t) with respect to the following equations: 

 

 (x, u , t)  ) 𝑓𝑖    = �̇�)   i = 1, 2, 3 ,..., n                                                                                                           

And find the initial conditions x = x0 and the final conditions on x1, x2, ... and x_q (q≤n) if u∈U is the 

permissible control area.  

Let's the following added function: 

 

𝐽∗ =  ∫ {𝑓0 + ∑ 𝑝𝑖(𝑓𝑖 − 𝑥𝑖)𝑑𝑡} ,𝑛
𝑖=1

𝑡

0
                                                                                                                         

 

And we have Hamilton H as follows: 

 𝐻 =  𝑓0 + ∑ 𝑝𝑖𝑓𝑖 ,𝑛
𝑖=1                                                                                                                                    

For simplicity, we remove the explicit dependence f_0 and f_i on time t. In this case, H is a function of 

the state vector x, the control vector u, and the extension vector p, i.e. H = H (x, u, p), 

Now we can write J * as follows: 

𝐽∗ = ∫ (H − ∑ piẋi)dt  ,n
i=1

t

0
                                                                                                                            

By calculating the Euler equations, we obtain the following additional equations: 

 𝑝𝑖 = −
𝜕𝐻

𝜕𝑥𝑖
 ,                (𝑖 = 1, 2, … , 𝑛)                                                                                                          

Euler equations for control variables cannot be considered as before because they may be discontinuous 

functions and as a result, we cannot suppose that there are relative derivatives
iuH  / . On the other 

hand, we can use the free endpoint condition to obtain the following equations: 

 𝑝𝑘(𝑇) = 0 ,        𝑘 = 𝑞 + 1, … , 𝑛                                                                                                                   

That is, the adjoint variable is zero at that endpoint where unspecified corresponding state variable is 

zero. The above equation is called diagonal or oblique conditions as before.  

Now the problem is finding the same equation ∂H / (∂u_i) = 0 for continuous controls. Suppose we can 

derive from H with respect to u, we consider the small change in u such that it still belongs to U, permitted 

control area. Corresponding to this small change u, we will have a small change in x like x  and in p like

p . 

The change in the value of J * that we denote by *J is equal to: 

𝛿𝐽∗ = 𝛿 ∫ (𝐻 − ∑ 𝑝𝑖�̇�𝑖)𝑑𝑡 ,𝑛
𝑖=1

𝑡

0
                                                                                                                      

The small shift operator follows properties the same properties as the differential operator. For example if 

 xff  then 

   

   .0' 2xxxf

xfxxff
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So,  
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So with approximation small quantities, we have the first order in  

 

                                                                                                                     

 

Assuming we could replace the small change operator with an integral notation, we have: 
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But using the chain rule for relative differential, we have 
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Because ii xHp  /  ،also from 



n

i

ii fpfH
1

0 using  

𝜕𝐹

𝜕�̇�1
 )

𝜕𝐹

𝜕𝑥1
 - 

𝑑

 𝑑𝑡
) = 0                                                                                                                                               

The result is : 

.ii

i
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Then           

 

  dtxp
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Now we can get the integral from the second part of the integral function 

 

  
  




n

i

T m

j

j

j

T

ii dtu
u

H
xpJ

1
0

1

0 .*                                                                                                         

And since at t = 0, all the values i = (1, 2, …, n) are known, we have 〖δx〗 _i (0) = 0. Also at 〖δx〗_i (t) 

= 0, i = (1, 2, …, Q), because these values ix
 are constant in Tt  . On i = q + 1,…, n, from the oblique 

conditions p_k (t) = 0, k = q + 1,…, n we have i = 1,2,…, q p_i (t) = 0 Therefore:  

 

𝑝𝑖(𝑇)𝛿𝑥𝑖(𝑇) = 0         𝑖 = 𝑞 + 1, … , 𝑛    

 
 




T m

j

j

j

dtu
u

H
J

0
1

*                                                                                                                                   

Where ju the small change of the j component is the control vector u, because all these changes are 

independent and it is necessary at each return point when the controls are joined, 〖δJ∗ = 0= 0, it , that result 

in: 

                                                                                 

 
𝜕𝐻

𝜕𝑢𝑗
= 0       (𝑗 = 1,2, … , 𝑚),                                                                                                                          

This equation holds when the controls are continuous and not constrained. Currently, when u belongs to 

the set U, the permissible control area and discontinuity in u is allowed.  

The reasons mentioned above can be used in the same way, except that the following phrase should be 

substituted instead for   jj duuH  /  

 

   .,,;,...,,...,,; 21 puxHpuuuuuxH mjj                                                                                              

As a result we have, 

 

                                                      

 

 

For u to be a minimizing control we should have 0*J  for all permissible controls uu    

This requires that for every authorized ju  and for mj ,...,1 , 

   puxHpuuuuxH mjj ,,;,...,,...,; 1                                                                                                   

     



T m

j

mjj dtpuxHpuuuuxHJ
0

1

1 .,,;,...,,...,;* 
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So, it was proved that for optimal control, H is minimized relative to the control variables muuu ,...,, 21 , 

which is known as the Pontryagin minimum principle. Of course, for continuous controls, from this result, 

the following equation is obtained, that is, the answer holds for all cases: Of course, for continuous controls, 

from this result, the following equation is obtained, that is, the answer holds for all cases: [1] 

 
𝜕𝐻

𝜕𝑈𝑗
= 0                (𝑗 = 1,2, … , 𝑚),                                                                                                                   

Rayleigh–Ritz Method for Solving Some Optimal Control Problems  

Example of optimal control problems 
An optimal control is a set of differential equations that describes the paths of control variables that 

optimize the objective function. 

Optimal control can be obtained from the Pontriagin maximum principle. 

The continuous objective function must be minimized in time: 

 

𝜑[x(t0) , t0 , x (tf) , tf] + ∫ 𝐿[𝑥(𝑡), 𝑢(𝑡), 𝑡]𝑑𝑡
𝑡𝑓

𝑡0
                                                                                                  

Limited to order degree dynamic conditions: 

 

�̇� (t) = a [x (t), u (t), t],                                                                                                                                                                                          

 

Algebraic path conditions: 

b[x(t) , u(t) , t ] ≤  0,                                                                                                                                                                        

And boundary conditions: 

𝜑  [x(t0), t0 , x(tf), tf ] = 0,                                                                                                                              

Where x (t) is the state variable, u (t) is the control variable, t is the independent variable (usually time), 

t0 is the initial time, and tt is the final time.                 

 The main goal of control systems engineers and designers is to achieve the best performance and 

behavior in all controllable dynamical processes. 

 Optimizing a dynamic process can improve performance; reduce costs, increase functionality and many 

other desirable results. 

 Optimal control (path optimization) is knowledge in which it was provided ways to achieve optimal 

dynamic processes. By determining the optimal controls, the optimal paths are obtained and vice versa. 

In each optimal control problem, to express the equations governing the dynamic process, a set of 

dynamic equations are presented that can be used to obtain the state of a system for the control input 

values at any time. These equations are generally expressed in state space and are known as state 

equations: 

�̇�= f (x (t), u (t), t)                                                                                                                                         

Each optimal control problem contains several state variables to express the state of the system at any 

time (x) and several control variables to apply control to the system at any time (u). In the above equation, 

t is time and f is a vector of nonlinear functions. 

Optimal control problems are defined in a time interval when the start time of this interval t0 is generally 

known. But the final time of this interval tf can be specified or free. In other words, path optimization 
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problems (optimal control) are solved in some cases in a certain period of time and in others in an indefinite 

period of time: 

t ∈  [ t0 , tf ]                                                                                                                                

In optimal control problems, various constraints are defined based on device constraints, environmental 

constraints, and the conditions desired by the designers. These constraints are generally divided into two 

categories: 

Point constraints and path constraints 

Point constraints are constraints related to the initial conditions φ_0 and φ_f of the final problem that 

are defined at the beginning and end of the path. These constraints can be specific and explicit values of 

state variables or can be expressed as a function of these variables.  

In some cases, point constraints are defined in the following midpoints (middle time): 

𝜑
0
 (x (t0), t0 ) ≥ 0                𝜑

𝑓
 (x (tf), tf ) ≥ 0                                                                                                 

Path constraints are constraints that apply to a problem over a period of time, which can be all or part of 

the problem interval: 

g(x (t) , u (t) , t ) ≥ 0                                                                                                                                       

In optimal control problems, the range of changes of state and control variables can be limited and 

delimited in a certain range. These delimitations may only be defined for some variables. Also, some 

variables may be delimited in only one aspect. 

In any optimization problem, the goal is to achieve an optimal event. This optimal event can be defined 

as a scalar objective function or efficiency measure (J), which is generally formulated as follows: 

J = 𝜑 ( x (tf) , tf ) + ∫ 𝐿(𝑥(𝑡), 𝑢 (𝑡), 𝑡 )𝑑𝑡
𝑡𝑓

𝑡0
                                                                                                  

This formulation of the objective function is called the Bolza form, which includes Mayer & Lagrange 

terms. 

 Meyer phrase (φ) is a function of state variables at the final moment of the problem. 

The Lagrangian expression (L) is an integral of mode and control variables over an interval. 

Optimal control problems can be expressed in multiphase.That is, the time interval of problems consists 

of combining several smaller consecutive time intervals. Each of these sub-intervals can be considered as 

an independent optimization problem. Of course, there are connections between the state and control 

variables of these time phases at the beginning and end of each phase, which leads to the integration of the 

overall problem. The time interval of these phases can be specific or free.  

In addition to the variables of state and control and free end times, other variables are included in the 

problems, which are design parameters that is considered.to calculate their optimal values in the optimal 

path.  

In summary, an optimal control problem consists of the following components: 

 

 State Equations                                            �̇�= f (x(t),u(t), t)      

 

 State and control variables                  [x , u] 

 

 Time interval (one or more time phases)   [ t0 ,  tf ] t ∈ 
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 Point constraints                                         𝜑
0
 (x (t0) , t0 ) ≥ 0        𝜑

𝑓
 ( x (tf) , tf ) ≥ 0 

 

 Path constraints                              g (x (t) , u (t) , t ) ≥ 0 

 

 Variable delimiting                                          xu   x(t) ≤  ≥ xl             uu  ≤ u(t) ≤ ul 

 

 The objective function                                 J = 𝜑 ( x (tf) , tf ) + ∫ 𝐿(𝑥(𝑡), 𝑢 (𝑡), 𝑡 )𝑑𝑡
𝑡𝑓

𝑡0
  

 

- Design parameters [1]. 

 

Rayleigh-Ritz (R-R) method 
We operate in such a way that φ_i are known functions that do not violate boundary conditions. 

y n = ∑ 𝛼𝑖
𝑛
𝑖=1 𝜑𝑖 (x)                                                                                                                                          (1) 

Inserting y_n in J (y) is expressed as a function of 〖α〗 _i. Now, in order to minimize the function, the 

following relations must be established: 

𝜕𝐽

𝜕𝛼𝑖
= 0          , 𝑖 = 1, … , 𝑛    (2)                                                                                                                           

Through which the value of the coefficient is determined. 

The resulting sum will be an upper bound for J (y) and y_n approximately for y, ie it can be proved that 

J(y) = 𝑙𝑖𝑚
𝑛→∞

𝐽(𝑦𝑛 )        ,             𝑙𝑖𝑚
𝑛→∞

𝑦𝑛 = 𝑦                                                                                                      

Solving optimal control problems using Rayleigh–Ritz method 

In this section, we present the Ritz method, which is actually a modification to the Rayleigh–Ritz, to 

solve optimal control problems. The optimal control problems that we try to solve include the optimal 

control problems with the initial conditions and the optimal control problems with the boundary conditions. 

We consider optimal control problems in the following general form: 

                                                                                         (3)                                        

 

Acceptable control causes thesystem to follow an 

acceptable path and solve the cost function 
*u  : Optimal control           : Optimal path curve 

We consider the y(t) approximation as follows if we obtain the initial condition { (y (x) = x_0 @y (t) = 

t_0): 

                                                                                                

                                          (4) 

 

 

Where s and  are base polynomials and unknown coefficients respectively. 

 

                                                   

 

*u

*x

k kC

      ttutxatx ,,

       
ft

tff dtttutxgttxhJ
0

,,,

       



m

i

k
n

i xwxtCtxtx
0

~~
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is also a satisfactory function that can be obtained using the Hermite interpolating polynomial, 

which must be met in the given situation. Now we place the approximation problem y ̃(t) in the original 

equation (1) based on the initial or boundary conditions and obtain, 

                                                                                                                                             

 

Now, we consider the function J using the equations of least squares. 

 

                                                             (5) 

                                   

Now if the values are determined in such a way that the J function is optimized in (3-8), then 

according to (3-5) or (3-6), we obtain functions that first satisfy in all conditions of the problem and second, 

they approximate the optimal value of the problem. According to multivariate calculations, the necessary 

condition for the optimization of its functions is that the optimal answer satisfies to the following device:  

  

                                                                                                                        (6) 

 

 

Now  is obtained by solving the system of m + 1 equation and unknown’s m + 1. To illustrate the 

problem in a simple example, we apply the expresses method. 

Solve the example 

Example 1: We obtain the following extreme function with the given conditions [2]. 

min ∫ (y2  −  y′ + 1)2dx 
1

0
                                                                                                                               (7) 

    

The boundary conditions of the problem include: 

 y (0) = 0 ,   

The exact answer is: 

 𝑦(𝑥) = tan 𝑥                                                                                                                                                

First, an estimate of the answer is considered to use the Ritz method as follows: 

𝑦(𝑥) ≅ 𝑦𝑚(𝑥) = ∑ 𝑐𝑖𝑥𝜑𝑖(𝑥)𝑚
𝑖=0 + 𝑥                                                                                                            (8) 

Where φ_i (x) are transferred Legendre polynomials. Then with the help of the least squares and insert 

the equation in (7) ,we will have:min ∫ (ym −  ym
′ + 1)2dx 

1

0
. 

And by solving system (6) we will get c k. The following results are obtained by setting m = 9. 

𝑐0 = 0.14915079046654667, 
𝑐1 = 0.24630644151060732, 

 tw

kC

kC

         
ft

tff dtttxxgtxgttxhJ
0

,~,~,
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𝑐2 = 0.11960889546511655, 
𝑐3 = 0.029778984929986724, 
𝑐4 = 0.009215053189103244, 
𝑐5 = 0.0024368933392946734, 
𝑐6 = 0.0006662564774293461, 
𝑐7 = 0.00018404186127628642, 
𝑐8 = 0.00003973832736805477, 
𝑐9 = 0.000020624349036595204 
 

Table 1: Minimum values for different m 

m=9 m=6 m=3  

1.80959 X 10−10 4.13732 X 10−7 0.00071 Minimum value 

 
𝑦9(𝑥) = 1.14915𝑥 + 0.2463𝑥(−1 + 2𝑥) + 0.0598𝑥(−1 + 3(−1 + 2𝑥)2) + 0.0148𝑥(−3(−1 + 2𝑥) + ⋯                                                                                                                                                                    

Table (1) shows the minimum value for different values of m. This table shows that by adding the value 

of m, the minimum value will tend to zero. The convergence of this method can be seen with this table. The 

convergence of this method can be seen with this table. 

Figure (1) shows the absolute error obtained. The absolute error for the problem with m = 9 is shown in 

the figure, which has less error compared to other methods. 

 

 
Figure 1: Absolute error for the problem with m = 9 

Example 2: Consider the following change account problem [3]: 

min ∫ y + y′ − 4e3x     1

0
                                                                                                                                     

The boundary conditions of the problem include: 

y (0) = 1, y(1) = e3                                                                                                                                                                                                  

 

The exact answer for the problem  :y(x) = e3x     

Euler-Lagrange equation of above problem is obtained as follows: 

y '' − y − 8𝑒3𝑥 = 0                                                                                                                                         (10) 

 

0.2 0.4 0.6 0.8 1.0

6. 10 7

4. 10 7

2. 10 7

2. 10 7

4. 10 7

6. 10 7
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First, an estimate of the answer is considered as follows to use the Ritz method: 

𝑦(𝑥) ≅  𝑦𝑚(𝑥) = ∑ 𝑐𝑖(𝑥 − 1)𝑥𝜑𝑖(𝑥)𝑚
𝑖=0 + 𝑒3𝑥,                                                                                        (11) 

 

Where φ_i (x) are transferred Legendre polynomials. Now by placing this answer in Equation (10) and 

then with the help of the least squares we get the following function: 

dxMin ∫ (𝑦𝑚 ′′ −  𝑦𝑚  −  8𝑒3𝑥1

0
)2                                                                                                                  

And by solving system (6) for this problem, we will get c ks. The following results are obtained by 

inserting m = 2. 

𝑐0 = 0,                                       
𝑐1 = 2.11758 × 10−22,  
𝑐2 = 4.23516 × 10−22 

By inserting  

In (11) we will have: 

𝑦(𝑥) = 0  + 𝑒3𝑥 + 2.11758 × 10−22(−1 + 𝑥)𝑥(−1 + 2𝑥) + 2.11758 × 10−22(−1 + 𝑥)𝑥(−1 +
3(−1 + 2𝑥)2) ≅ 𝑒3𝑥

                                                                                                                                                                                        

Where we will get real answer. 

 

Example 3: Consider the following changes account problem [3]. 

Min ∫
1+ 𝑦2(𝑥) 

𝑦′2
(𝑥)

1

0
                                                                                                                                 (12) 

The boundary conditions of the problem equal to:  

 

y (0) = 0     ,   y(1) = 0.5 

The exact answer is equal to: 

sinh( 0.4812118250𝑥)   = y                                                                                                                                

The Euler-Lagrange equation of above problem is obtained as follows: 

0     = 𝑦′2
 y  - 𝑦2 𝑦′′   + 𝑦′′                                                                                                               (13) 

First, an estimate of the answer is considered to use the Ritz method: 

𝑦(𝑥) ≅ 𝑦𝑚(𝑥) = ∑ 𝑐𝑖(𝑥 − 1)𝑥𝜑𝑖(𝑥)𝑚
𝑖=0 +

1

2
𝑥;                                                                             (14) 

Where φ_i (x) is transferred Legendre polynomials. 

Now by inserting this answer in Equation (13) and then with the help of the least squares we get following 

function: 
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Min ∫ (𝑦′2
 y −  𝑦2 𝑦′′  +  𝑦′′1

0
)2 dx,                                                                                                             

 

And by solving system (6), we will get c k. The following results are obtained by inserting m = 7. Figure 

(2) shows obtained error. 

𝑐0 = 0.018788174940396554, 
𝑐1 = 0.018788174940553726, 
𝑐2 = 0.00021621994860262242, 
𝑐3 = 0.00021621997996102506, 
𝑐4 = 0.000001189275905889139, 
𝑐5 = 0.00000118959163869272, 
𝑐6 = 3.595939418599141 × 10−9, 
𝑐7 = 3.932007117854883 × 10−9 
 

Table 2: Minimum values for different m’s 

m=7 m=5  m=3  

5/17055 x 10−19 8/5419 x 10−19 4/44045 x 10−13 Minimum value 

 
𝑦7(𝑥) =

𝑥

2
+ 0.01878817 (−1 + 𝑥)𝑥 + 0.01878(−1 + 𝑥)𝑥2 + 0.00021621(−1 + 𝑥)𝑥3 + 0.00021621(−1 + 𝑥)𝑥4 +

0.00000118(−1 + 𝑥)𝑥5 + 0.00000118 (−1 + 𝑥)𝑥6 + 3.59593941 × 10−9(−1 + 𝑥)𝑥7 + 3.9320071 × 10−9(−1 + 𝑥)𝑥8                                                                                                                                                 

Table (2) shows the minimum values for different values of m.  

This table shows that by adding the value of m, the minimum value will tend to zero. The convergence 

of this method can be seen using this table. 

Figure (3-3) shows the absolute error for the problem with m = 7, which has less error compared to other 

methods. 

 

 
Figure 2:  Absolute error for the problem with m = 5 

 

Example 4: let's the following problem [1]: 

 

min
1

2
x2(1) +

1

2
∫ (x2 + u2) dt

1

0
                                                                                                                   (15) 

 

The boundary conditions of the problem include:  

0.2 0.4 0.6 0.8 1.0

1. 10 11

2. 10 11

3. 10 11

4. 10 11

5. 10 11

6. 10 11
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𝑥
.

= −2𝑥(𝑡) + 𝑢(𝑡)  ,                                                                                                                                  (16) 

𝑥(0) = 0.9 

o solve this problem, we first obtain from equation (16) u (t), as follows: 

 

𝑢(𝑡) = 𝑥
.
(𝑡) + 2𝑥(𝑡)                                                                                                                                   (17) 

We have: 𝑚𝑖𝑛
1

2
𝑥2(1) +

1

2
∫ (𝑥2 + (𝑥

.
(𝑡) + 2𝑥(𝑡))

2
𝑑𝑡

1

0

 by inserting u (t) in equation (15)                       (18)      

 

We also consider w (t) = 0.9 according to the problem conditions. To use the Ritz method, first an 

estimate of the answer is considered as follows: 

 

𝑥(t) ≅ 𝑥𝑚(t) = ∑ 𝑐𝑖𝑡𝜑𝑖(𝑡)𝑚
𝑖=0 + 0.9                                                                                                      (11)          

Where φ_i (t) are transferred Legendre polynomials. 

Now by replacing in (18) and the least squares and solving the system (6), we will get c_ks. The 

following results are obtained by inserting m7. 

 

𝑐0 =  −1.42209828 

𝑐1 = 0.80695258 

𝑐2 =  −0.27529392 

𝑐3 = 0.07996614 

𝑐4 =  −𝑜. 02226218 

𝑐5 = 0.00593688 

𝑐6 =  −0.00147210 

𝑐7 = 0.00026013 

 

Table 3: Minimum values for different m 

 

𝑥7(𝑡) =  0.9  − 1.4220982 𝑥 + 0.80695258 𝑥(−1 + 2𝑥) − 0.13764696𝑥(−1 + 3(−1 + 2𝑥)2) +
0.03998307𝑥(−3(−1 + 2𝑥) + 5(−1 + 2𝑥)3) − 0.00278277𝑥(3 − 30(−1 + 2𝑥)2 + 35(−1 + 2𝑥)4) +
0.00074211𝑥(15(−1 + 2𝑥) − 70(−1 + 2𝑥)3 + 63(−1 + 2𝑥)5) − 0.00009200𝑥(−5 + 105(−1 + 2𝑥)2 −
315(−1 + 2𝑥)4 + 231(−1 + 2𝑥)6) + 0.00001625𝑥(−35(−1 + 2𝑥) + 315(−1 + 2𝑥)3 − 693(−1 + 2𝑥)5 +
429(−1 + 2𝑥)7)                                                                                                                                                                                                                                                

Table (3) shows the minimum for different values of m. This table shows that by adding the value of m, 

the minimum value will tend to zero. The convergence of this method can be seen using this table. 

Example 5: let's the following problem [1]: 

 

min ∫ (𝑥2(𝑡) + 𝑢2(𝑡)) 𝑑𝑡
1

0
                                                                                                                              (19) 

The conditions of the problem include: 

𝑥
.
(𝑡) = 𝑢(𝑡)   ,                                                                                                                                                     (20) 

𝑥(0) = 1    ,   

  m  =7   m  =5 m=3  

0.00315737 0.00315941 0.0046029 Minimum value 
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 𝑥(1) =? (𝑓𝑟𝑒𝑒 ) 

By inserting equation (20) in (21) we have: 

min ∫ (𝑥2(𝑡) +  𝑥
. 2(𝑡)) 𝑑𝑡

1

0
                                                                                                                         (22) 

 

Also, according to the conditions of the w (x) = 1 + ax problem, which we arbitrarily consider a = 2. 

First, an estimate of the answer is considered as follows to use the Ritz method: 

𝑥(𝑡) ≅ 𝑥𝑚(t) = ∑ 𝑐𝑖x(𝑥 − 1)𝜑𝑖(𝑥)𝑚
𝑖=0 + 1 + 2𝑥                                                                                          

Where φ_i (x) are transferred Legendre polynomials. By inserting this answer in (23) and the least 

squares method, we get the following function: 

Min ∫ (𝑦2 + 𝑦′2
)21

0
dx                                                                                                                                     

By solving system (6), we will get c_k. The following results are obtained by setting m = 7: 

 

𝑐0 = −55.22783600929342, 
𝑐1 = 476.7418127269536, 
𝑐2 = −2145.739030225234, 
𝑐3 = 5578.822488369367, 
𝑐4 = −8678.036250653968, 
𝑐5 = 7969.6029601920545, 
𝑐6 = −3984.824615771405, 
𝑐7 = 836.3308376931988 
 

Table 4: Minimum values for different m 

 

𝑥7(t) =  1 + 2𝑡 − 55.22783600 𝑡2 + 476.74181272 𝑡3 − 2145.73903022 𝑡4 + 5578.82248836 𝑡5 −
8678.03625065 𝑡6 + 7969.60296019 𝑡7 − 3984.82461577 𝑡8 + 836.33083769  𝑡9                           
 

Table (4) shows the minimum value for m different values. This table shows that the minimum m value 

will tend to zero by adding the m value. The convergence of this method can be seen with this table. 

Example 6: let's the following problem: [4] 

𝑚in J (x , u)  =  
1

2
∫ (𝑢2(𝑡) + 𝑥2(𝑡))𝑑𝑡

1

0
                                                                                                      (24) 

The conditions of the problem include:  

1

2
 �̇�(t ) + 𝑥′(t) = u(t) − x(t)                                                                                                                 (25)         

x (0) =1 

x (1) = cosh(√2) + sinh(√2)  

From equation (25) we have: 

m=7 m=5 m=3  

0.856674 0.91981 1.07688 Minimum value 
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u(t) = x(t) – 𝑥′(t) – 
1

2
 �̇�(t )                                                                                                                (22)  

By inserting equation (26) in (24) we have: 

𝑚𝑖𝑛 𝐽 (𝑥 , 𝑢)  =  
1

2
∫ (( 𝑥(𝑡) – 𝑥′(𝑡) – 

1

2
 �̇�(𝑡 ))2 + 𝑥2(𝑡)) 𝑑𝑡

1

0
                                                                     

Also according to the problem conditions: 

w(t) = t(cosh( √2) +  𝛽 sinh( √2)) + 1 − 𝑡 

The real answer is: 

x(t) = cosh(√2𝑡) + sinh(√2𝑡)                                                                                                                     

u(t) = ( 1+ √2𝛽) cosh(√2𝑡) + (√2 + 𝛽) sinh(√2𝑡) 

Where β = -0.98. 

First, an estimate of the answer is considered to use the Ritz method as follows: 

x(t) ≅  𝑥𝑚(t) = ∑ 𝑐𝑖𝑡𝑖+1(𝑡 − 1) + 𝑚
𝑖=0  t(cosh( √2) +  𝛽 sinh( √2)) + 1 − 𝑡                                               

By solving system (6), we will get c_k. The following results are obtained by inserting m = 5: 

𝑐0 = 0.698538829770716, 
𝑐1 =  −0.4955510031144181, 
𝑐2 = 0.6665725513082678, 
𝑐3 =  −1.0072598954358019, 
𝑐4 = 0.8769007067417959, 
𝑐5 =  −0.3010418739034535. 

  

 

𝑥5(𝑡) = 1 − 0.7181t + 0.6985(t − 1)t − 0.4955(t − 1)t2

+0.6665(t − 1)t3 + 1.00726(t − 1)t4 + 0.872901(t − 1)t5

−0.3010(t − 1)t6

                                                                  

Table 5: Minimum values for different m 

m=5 m=3 m=2  

 0.192221  0.192221 0.192223  Minimum value 

Table (5) shows the minimum values for different values of m 

Table (5) shows the minimum values for different m values. This table shows that by adding the m value, 

the minimum value will tend to zero. The convergence of this method can be seen with this table. 

Conclusion 
It is often possible to integrate from the differential equation into an equivalent equation in solving 

various problems and mathematics, physics and other sciences and look for a function that provides the 

minimum value for this new problem. These problems are called change problems, and methods that can 

be used to find a function that minimize these problems are called variational methods. Variational methods 

provide accurate results of a problem without the need for powerful computers. Variational methods can be 
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divided into direct and indirect classes. The direct method includes Riley Ritz and the indirect method 

involves Euler–Lagrange equation. We convert the given problem into a change problem to apply the 

change methods to solve the differential equations and then we consider the approximate answer depending 

on the type of used methods.  

According to the contents of this study and the examining some optimal control problems, the direct 

method to solve control problems is a suitable way to solve linear control problems. As shown in the 

examples, the method is convergent and has very little error compared to other methods. 

In the future, this method can be used to solve nonlinear and more complex control problems. 
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